Bursts of transposable elements as an evolutionary driving force

Journal of Evolutionary Biology - Tập 27 Số 12 - Trang 2573-2584 - 2014
Alexander Belyayev1
1Institute of Botany, Czech Academy of Sciences, Pruhonice near Prague, Czech Republic.

Tóm tắt

AbstractA burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress‐induced bursts of differentTEs. The events for which bursts ofTEs have been recorded include domestication, polyploidy, changes in mating systems, interspecific and intergeneric hybridization and abiotic stress. Cases involving abiotic stress, particularly bursts ofTEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro‐ and macro‐evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts ofTEs and their possible consequences, with particular emphasis on the speciation process.

Từ khóa


Tài liệu tham khảo

10.1002/bies.201200133

10.1007/s00122-006-0490-0

10.1023/A:1009231019833

10.1186/1759-8753-1-6

10.1016/0966-842X(96)10042-1

10.1016/0966-842X(96)10042-1

10.1023/A:1006344508454

Bernstein M., 1995, Transposon insertions causing constitutive sex‐lethal activity in Drosophila melanogaster affect Sxl sex‐specific transcript splicing, Genetics, 139, 631, 10.1093/genetics/139.2.631

10.1038/443521a

10.1007/s10577-007-1202-6

10.1186/1759-8753-3-5

10.1038/ngeo263

10.1023/A:1018310418744

10.1146/annurev-genom-082509-141554

10.1007/978-94-011-4898-6

10.1046/j.1365-2540.2000.00751.x

10.1023/A:1018309007841

10.1105/tpc.113.114009

10.1038/nrg2526

10.1017/S0016672300021455

10.1038/371215a0

10.1007/s11427-009-0052-1

10.1016/j.tig.2005.09.009

10.1007/BF00368015

10.1038/339532a0

10.5962/bhl.title.82303

10.1186/1471-2164-8-422

10.1101/gr.132102

10.1093/genetics/160.2.697

10.1126/science.276.5311.337c

10.1371/journal.pbio.1000234

10.1155/2012/430136

10.1016/j.gde.2008.11.005

10.1159/000084957

10.7312/gran92318

10.1016/S0168-9525(00)02104-1

10.1371/journal.pgen.1002972

10.1186/1759-8753-3-3

10.1038/nature05917

10.1023/A:1018337831039

10.1016/j.tree.2004.06.013

10.1534/genetics.111.134643

10.3732/ajb.91.4.621

10.1073/pnas.1010814108

10.1016/S0168-9525(02)00006-9

10.1146/annurev.genom.8.080706.092416

10.1186/1745-6150-6-44

Kashkush K., 2003, Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat, Nat. Genet., 32, 102, 10.1038/ng1063

10.1534/genetics.111.128348

10.1101/gr.201201

10.1046/j.1365-201X.2003.01166.x

10.1086/286054

10.1534/genetics.105.047985

10.1534/genetics.110.120790

10.1016/S0065-2296(08)60284-0

10.1017/S0016672300027695

10.1155/2012/232530

10.1017/S0016672305007585

10.1073/pnas.0705238104

Levin D.A., 2002, The Role of Chromosomal Change in Plant Evolution, 10.1093/oso/9780195138597.001.0001

10.1111/j.1558-5646.1953.tb00055.x

10.1002/dvg.20508

10.3732/ajb.91.10.1700

10.1038/nature11879

10.1371/journal.pbio.0000067

10.1038/nrg3374

10.1139/g00-058

10.1007/s00122-004-1618-8

10.1073/pnas.0611223104

10.1093/molbev/msr282

10.1126/science.1089370

Martienssen R., 2008, Great leap forward? Transposable elements, small interfering RNA and adaptive Lamarckian evolution, New Phytol., 179, 572, 10.1111/j.1469-8137.2008.02567.x

10.1016/j.gene.2005.05.031

10.1186/1471-2164-10-624

McClintock B., 1946, Maize genetics, Year B. Carnegie Inst. Wash., 45, 176

10.1126/science.15739260

10.1006/jtbi.1997.0403

Mi S., 2000, Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis, Nature, 17, 785, 10.1038/35001608

10.1111/j.1095-8312.2004.00348.x

10.1111/j.0014-3820.2005.tb01753.x

10.1038/nature05022

10.1038/15490

10.1016/j.bbrc.2006.06.071

10.1073/pnas.0605421103

10.1038/nature08479

10.1023/A:1003957323876

10.1073/pnas.252626899

10.1002/bies.200800219

10.1016/j.jtbi.2005.05.001

10.1101/gr.5826307

Pavliček A., 2002, Length distribution of long interspersed nucleotide elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection, Gene, 300, 89, 10.1016/S0378-1119(02)01047-8

10.1073/pnas.0609601104

10.1016/S0168-9525(02)02709-9

10.1023/B:CHRO.0000013168.61359.43

10.1073/pnas.0405817101

10.1159/000121084

10.1007/s10577-011-9220-9

10.1101/gr.071886.107

10.1016/j.gene.2010.01.003

10.1016/S0169-5347(01)02187-5

10.1126/science.1137729

10.1126/science.1086949

10.1139/g01-092

10.1016/j.tree.2010.06.001

10.1016/j.biochi.2011.07.014

10.1371/journal.pone.0010907

10.1101/gr.10.7.908

10.1038/nrg2072

10.1146/annurev.es.01.110170.001515

10.1126/science.1157707

10.1073/pnas.94.16.8646

Stower H., 2013, Alternative splicing: regulating Alu element ‘exonization’, Nat. Rev. Genet., 14, 152

10.1093/molbev/msp043

10.1038/nature08351

10.1186/1741-7007-7-40

10.1093/oxfordjournals.molbev.a026266

10.1093/oxfordjournals.molbev.a003819

10.1007/s00412-005-0024-6

10.1016/j.gde.2008.01.015

10.1007/978-1-4615-5419-6_10

10.1016/S0960-9822(02)00638-3

White M.J.D., 1978, Modes of Speciation

10.1007/1-4020-5906-X_6

10.1002/bies.200900026