Bursera fruit traits as drivers of fruit removal by flycatchers

Acta Oecologica - Tập 114 - Trang 103811 - 2022
Rosalba Rodríguez-Godínez1,2, Luis A. Sánchez-González3, María del Coro Arizmendi4, R. Carlos Almazán-Núñez2
1Posgrado en Recursos Naturales y Ecología, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Av. Gran Vía Tropical 20, Fraccionamiento Las Playas, C.P. 39390, Acapulco, Guerrero, Mexico
2Laboratorio Integral de Fauna Silvestre (Área Ornitología), Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Ciudad Universitaria Sur, C.P. 39090, Chilpancingo de los Bravo, Guerrero, Mexico
3Museo de Zoología “Alfonso L. Herrera”, Depto. de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-399, Ciudad de México 04510, Mexico
4Laboratorio de Ecología, UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, C. P. 54090, Tlalneplantla, Estado de México, Mexico

Tài liệu tham khảo

Alcántara, 2003, Conflicting selection pressures on seed size: evolutionary ecology of fruit size in a bird‐dispersed tree, Olea europaea, J. Evol. Biol., 16, 1168, 10.1046/j.1420-9101.2003.00618.x Almazán-Núñez, 2015, Distribution of the community of frugivorous birds along a successional gradient in a tropical dry forest in south-western Mexico, J. Trop. Ecol., 31, 57, 10.1017/S0266467414000601 Almazán-Núñez, 2016, Myiarchus flycatchers are the primary seed dispersers of Bursera longipes in a Mexican dry forest, PeerJ, 4, e2126, 10.7717/peerj.2126 Almazán-Núñez, 2021, Fruit size and structure of zoochorous trees: identifying drivers for the foraging preferences of fruit-eating birds in a Mexican successional dry forest, Animals, 11, 3343, 10.3390/ani11123343 Almeida‐Neto, 2008, A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement, Oikos, 117, 1227, 10.1111/j.0030-1299.2008.16644.x Bascompte, 2007, Plant-animal mutualistic networks: the architecture of biodiversity, Annu. Rev. Ecol. Evol. Systemat., 38, 567, 10.1146/annurev.ecolsys.38.091206.095818 Bascompte, 2003, The nested assembly of plant–animal mutualistic networks, Proc. Natl. Acad. Sci. Unit. States Am., 100, 9383, 10.1073/pnas.1633576100 Bates, 1992, Frugivory on Bursera microphylla (Burseraceae) by wintering gray Vireos (Vireo vicinior, Vireonidae) in the coastal deserts of Sonora, Mexico, Southwest. Nat., 37, 252, 10.2307/3671866 Bender, 2018, Morphological trait matching shapes plant–frugivore networks across the Andes, Ecography, 41, 1910, 10.1111/ecog.03396 Blendinger, 2017, Functional equivalence in seed dispersal effectiveness of Podocarpus parlatorei in Andean fruit-eating bird assemblages, Front. Ecol. Evol., 5, 57, 10.3389/fevo.2017.00057 Blendinger, 2016, Fruit selection by Andean forest birds: influence of fruit functional traits and their temporal variation, Biotropica, 48, 677, 10.1111/btp.12329 Blüthgen, 2010, Why network analysis is often disconnected from community ecology: a critique and an ecologist's guide, Basic Appl. Ecol., 11, 185, 10.1016/j.baae.2010.01.001 Blüthgen, 2007, Specialization, constraints, and conflicting interests in mutualistic networks, Curr. Biol., 17, 341, 10.1016/j.cub.2006.12.039 Böhm, 2009, Patterns of resource use in an assemblage of birds in the canopy of a temperate alluvial forest, J. Ornithol., 150, 799, 10.1007/s10336-009-0401-7 Borges, 2003, Power and type I errors rate of Scott-Knott, Tukey and Newman-Keuls tests under normal and no-normal distributions of the residues, Rev. Mat. Estat., 21, 67 Brown, 2004, Toward a metabolic theory of ecology, Ecology, 85, 1771, 10.1890/03-9000 Buitrón-Jurado, 2020, Specialization increases in a frugivorous bird–plant network from an isolated montane forest remnant, Community Ecol., 1, 1 Burns, 2013, What causes size coupling in fruit-frugivore interaction webs?, Ecology, 94, 295, 10.1890/12-1161.1 Burns, 2009, Fruit–frugivore interactions in two southern hemisphere forests: allometry, phylogeny and body size, Oikos, 118, 1901, 10.1111/j.1600-0706.2009.17661.x Carlo, 2008, Inequalities in fruit‐removal and seed dispersal: consequences of bird behaviour, neighbourhood density and landscape aggregation, J. Ecol., 96, 609, 10.1111/j.1365-2745.2008.01379.x Carlo, 2016, Generalist birds promote tropical forest regeneration and increase plant diversity via rare‐biased seed dispersal, Ecology, 97, 1819, 10.1890/15-2147.1 Carlucci, 2017, Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity, Ecography, 40, 521, 10.1111/ecog.02104 Carvalho, 2014, Niche overlap and network specialization of flower-visiting bees in an agricultural system, Neotrop. Entomol., 43, 489, 10.1007/s13744-014-0239-4 Chama, 2013, Habitat characteristics of forest fragments determine specialisation of plant-frugivore networks in a mosaic forest landscape, PLoS One, 8, 10.1371/journal.pone.0054956 Corlett, 2017, Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: an update, Glob. Ecol. Conserv., 11, 1, 10.1016/j.gecco.2017.04.007 Courtney, 1992, It takes guts to handle fruits, Oikos, 65, 163, 10.2307/3544899 Dalsgaard, 2017, Opposed latitudinal patterns of network‐derived and dietary specialization in avian plant–frugivore interaction systems, Ecography, 40, 1395, 10.1111/ecog.02604 Dehling, 2016, Morphology predicts species' functional roles and their degree of specialization in plant–frugivore interactions, Proc. Biol. Sci., 283 De-Nova, 2012, Insights into the historical construction of species‐rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales), New Phytol., 193, 276, 10.1111/j.1469-8137.2011.03909.x Dormann, 2008, Introducing the bipartite package: analysing ecological networks, R. News, 8, 8 Dormann, 2014, A method for detecting modules in quantitative bipartite networks, Methods. Ecol. Evol., 5, 90, 10.1111/2041-210X.12139 Dugger, 2019, Seed‐dispersal networks are more specialized in the Neotropics than in the Afrotropics, Global Ecol. Biogeogr., 28, 248, 10.1111/geb.12833 Fox, 2019 Galetti, 2003, Effects of forest fragmentation, anthropogenic edges and fruit color on the consumption of ornithocoric fruits, Biol. Conserv., 111, 269, 10.1016/S0006-3207(02)00299-9 García, 2016, Birds in ecological networks: insights from bird-plant mutualistic interactions, Ardeola, 63, 151, 10.13157/arla.63.1.2016.rp7 García, 2014, Exotic birds increase generalization and compensate for native bird decline in plant-frugivore assemblages, J. Anim. Ecol., 83, 1441, 10.1111/1365-2656.12237 Godínez-Álvarez, 2020, Are large frugivorous birds better seed dispersers than medium‐ and small‐sized ones? Effect of body mass on seed dispersal effectiveness, Ecol. Evol., 10, 6136, 10.1002/ece3.6285 González-Castro, 2015, Relative importance of phenotypic trait matching and species abundances in determining plant–avian seed dispersal interactions in a small insular community, AoB Plants, 7, plv017, 10.1093/aobpla/plv017 Grant, 1970, Variation in the tarsus length of birds in island and mainland regions, Evolution, 25, 599, 10.1111/j.1558-5646.1971.tb01920.x Guízar, 1991 Hartung, 2005, Effects of savanna restoration on the foraging ecology of insectivorous songbirds, Condor, 107, 879, 10.1093/condor/107.4.879 Hegde, 1991, Fruit preference criteria by avian frugivores: their implications for the evolution of clutch size in Solanum pubescens, Oikos, 60, 20, 10.2307/3544987 Herrera, 1985, Habitat-consumer interactions in frugivorous birds, 341 Herrera, 1995, Plant-vertebrate seed dispersal systems in the Mediterranean: ecological, evolutionary, and historical determinants, Annu. Rev. Ecol. Systemat., 26, 705, 10.1146/annurev.es.26.110195.003421 Herrera, 2002, Correlated evolution of fruit and leaf size in bird‐dispersed plants: species‐level variance in fruit traits explained a bit further?, Oikos, 97, 426, 10.1034/j.1600-0706.2002.970312.x Horn, 1966, Measurement of “overlap” in comparative ecological studies, Am. Nat., 100, 419, 10.1086/282436 Jelihovschi, 2014, ScottKnott: a package for performing the Scott-Knott clustering algorithm in, R. Tend. Mat. Apl. Comput., 15, 3, 10.5540/tema.2014.015.01.0003 Jordano, 1995, Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant-animal interactions, Am. Nat., 145, 163, 10.1086/285735 Jordano, 2000, Fruits and frugivory, 125 Jyotsna, 2003, Symbiotic seed germination and mycorrhizae of federally threatened Platanthera praeclara (Orchidaceae), Am. Midl. Nat., 1491, 104 Li, 2018, A review of modelling and analysis of morphing wings, Prog. Aero. Sci., 100, 46, 10.1016/j.paerosci.2018.06.002 Lord, 2004, Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral, Ecol., 29, 430 Mazer, 1993, Fruit size and shape: allometry at different taxonomic levels in bird-dispersed plants, Evol. Ecol., 7, 556, 10.1007/BF01237821 Miles, 1984, The correlation between ecology and morphology in deciduous forest passerine birds, Ecology, 65, 1629, 10.2307/1939141 Moegenburg, 2003, Do frugivores respond to fruit harvest? An experimental study of short‐term responses, Ecology, 84, 2600, 10.1890/02-0063 Moermond, 1985, Neotropical avian frugivores: patterns of behavior, morphology, and nutrition, with consequences for fruit selection, Ornithol. Monogr., 36, 865, 10.2307/40168322 Moghimbeigi, 2008, Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros, J. Appl. Stat., 35, 1193, 10.1080/02664760802273203 Mokotjomela, 2013, Do frugivorous birds concentrate their foraging activities on those alien plants with the most abundant and nutritious fruits in the South African Mediterranean-climate region?, Plant Ecol., 214, 49, 10.1007/s11258-012-0145-y Morales, 2008, The effect of space in plant-animal mutualistic networks: insights from a simulation study, Oikos, 117, 1362, 10.1111/j.0030-1299.2008.16737.x Moran, 2010, Can functional traits predict ecological interactions? A case study using rain forest frugivores and plants in Australia, Biotropica, 42, 318, 10.1111/j.1744-7429.2009.00594.x Morán-López, 2019, Can network metrics predict vulnerability and species roles in bird-dispersed communities? Not without behavior, Ecol. Lett., 23, 348, 10.1111/ele.13439 Morrison, 1990 Murakami, 2001, Species-specific foraging behavior of birds in a riparian forest, Ecol. Res., 16, 913, 10.1046/j.1440-1703.2001.00448.x Murphy, 1989, Life history variability in North American breeding tyrant flycatchers: phylogeny, size or ecology?, Oikos, 54, 3, 10.2307/3565891 Naniwadekar, 2019, Large frugivores matter: insights from network and seed dispersal effectiveness approaches, J. Anim. Ecol., 88, 1250, 10.1111/1365-2656.13005 Nazaro, 2017, How important are arthropods in the diet of fruit-eating birds?, Wilson. J. Ornitol., 129, 520, 10.1676/16-083.1 Olesen, 2011, Strong, long-term temporal dynamics of an ecological network, PLoS One, 6, 10.1371/journal.pone.0026455 Olesen, 2011, Missing and forbidden links in mutualistic networks, Proc. Biol. Sci., 278, 725 Onstein, 2018, To adapt or go extinct? The fate of megafaunal palm fruits under past global change, Proc. Biol. Sci., 285 Ortiz-Pulido, 2009, Seed dispersal of Bursera fagaroides (Burseraceae): the effect of linking environmental factors, Southwest. Nat., 51, 11, 10.1894/0038-4909(2006)51[11:SDOBFB]2.0.CO;2 Patefield, 1981, Algorithm AS 159: an efficient method of generating random R × C tables with given row and column totals, J. Roy. Stat. Soc., 30, 91 Pegman, 2016, Size-based fruit selection by a keystone avian frugivore and effects on seed viability, N. Z. J. Bot., 55, 118, 10.1080/0028825X.2016.1247882 Pizo, 2002, The seed dispersers and fruit syndromes of Myrtaceae in the Brazilian Atlantic forest, 129 Pizo, 2011, Frugivory, post‐feeding flights of frugivorous birds and the movement of seeds in a Brazilian fragmented landscape, Biotropica, 43, 335, 10.1111/j.1744-7429.2010.00695.x Pizo, 2021, Frugivory specialization in birds and fruit chemistry structure mutualistic networks across the Neotropics, Am. Nat., 197, 236, 10.1086/712381 Plein, 2013, Constant properties of plant-frugivore networks despite fluctuations in fruit and bird communities in space and time, Ecology, 94, 1296, 10.1890/12-1213.1 Queen, 2002 Quiroga, 2018, Relationship between morphology and trophic ecology in an assemblage of passerine birds in riparian forests of the Paraná River (Argentina), Avian Biol. Res., 11, 44, 10.3184/175815617X15114328596437 Ramos-Ordoñez, 2011, Parthenocarpy, attractiveness and seed predation by birds in Bursera morelensis, J. Arid Environ., 75, 757, 10.1016/j.jaridenv.2011.04.013 Ramos-Ordoñez, 2012, The fruit of Bursera: structure, maturation and parthenocarpy, AoB PLANTS, 10.1093/aobpla/pls027 Ramos-Robles, 2016, Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability, PeerJ, 4, 10.7717/peerj.2048 Reginato, 2020, Is dispersal mode a driver of diversification and geographical distribution in the tropical plant family Melastomataceae?, Mol. Phylogenet. Evol., 148, 10.1016/j.ympev.2020.106815 Rezende, 2007, Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks, Oikos, 116, 1919, 10.1111/j.0030-1299.2007.16029.x Rzedowski, 2005, Inventario del conocimiento táxonomico, así como de la diversidad y del endemismo regionales de las especies mexicanas de Bursera (Burseraceae), Acta Bot. Mex., 70, 85, 10.21829/abm70.2005.989 Schemske, 2002, Tropical diversity: patterns and processes, 163 Schleuning, 2012, Specialization of mutualistic interaction networks decreases towards tropical latitudes, Curr. Biol., 22, 1925, 10.1016/j.cub.2012.08.015 Schleuning, 2014, Ecological, historical and evolutionary determinants of modularity in weighted seed‐dispersal networks, Ecol. Lett., 17, 454, 10.1111/ele.12245 Schupp, 2010, Seed dispersal effectiveness revisited: a conceptual review, New Phytol., 188, 333, 10.1111/j.1469-8137.2010.03402.x Scott, 1984, Avian consumers of Bursera, Ficus, and Ehretia fruit in Yucatan, Biotropica, 16, 319, 10.2307/2387943 Smith, 2014, Fruit removal rate depends on neighborhood fruit density, frugivore abundance, and spatial context, Oecologia, 174, 931, 10.1007/s00442-013-2834-1 Snow, 1971, Evolutionary aspects of fruit‐eating by birds, Ibis, 113, 194, 10.1111/j.1474-919X.1971.tb05144.x Stevenson, 2005, Influence of seed size on dispersal patterns of woolly monkeys (Lagothrix lagothricha) at Tinigua Park, Colombia, Oikos, 110, 435, 10.1111/j.0030-1299.2005.12898.x Tabachnick, 1996 Thébault, 2010, Stability of ecological communities and the architecture of mutualistic and trophic networks, Science, 329, 853, 10.1126/science.1188321 Traylor, 1982, A survey of the tyrant flycatchers, Living Bird., 19, 7 Tripp, 2013, Time-calibrated phylogenies of hummingbirds and hummingbird-pollinated plants reject a hypothesis of diffuse co-evolution, J. Syst. Evol. Bot., 31, 89 Valencia-Ávalos, 2011, La flora del municipio de Atenango del Río, estado de Guerrero, México, Polibotánica, 32, 9 Wheelwright, 1985, Fruit‐size, gape width, and the diets of fruit‐eating birds, Ecology, 66, 808, 10.2307/1940542 Wheelwright, 1993, Fruit size in a tropical tree species: variation, preference by birds, and heritabilityy, Vegetatio, 107, 163, 10.1007/BF00052219 Woodward, 2005, Body size in ecological networks, Trends Ecol. Evol., 20, 402, 10.1016/j.tree.2005.04.005 Zanata, 2017, Global patterns of interaction specialization in bird–flower networks, J. Biogeogr., 44, 1891, 10.1111/jbi.13045 Zeileis, 2008, Regression models for count data in, RJ Stat. Softw., 27, 1 Zuur, 2012