Gánh nặng bệnh phổi tắc nghẽn mạn tính do nhiệt độ không tối ưu từ năm 1990 đến 2019: phân tích có hệ thống từ Nghiên cứu Gánh nặng Bệnh tật toàn cầu năm 2019

Springer Science and Business Media LLC - Tập 30 - Trang 68836-68847 - 2023
Jianjun Bai1, Jiaxin Cui2, Chuanhua Yu1
1Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
2School of Nursing, Wuhan University, Wuhan, China

Tóm tắt

Bệnh phổi tắc nghẽn mạn tính (COPD) là nguyên nhân thứ ba dẫn đến tử vong trên toàn cầu. Khi các yếu tố nguy cơ truyền thống (như hút thuốc và ô nhiễm không khí) đã được xác định rõ ràng về gánh nặng của COPD, gánh nặng COPD do nhiệt độ không tối ưu đã trở thành vấn đề được quan tâm rộng rãi. Trong nghiên cứu này, chúng tôi đã trích xuất dữ liệu gánh nặng liên quan đến COPD do nhiệt độ không tối ưu từ GBD 2019 và áp dụng các phương pháp đánh giá như thay đổi phần trăm hàng năm ước tính, hồi quy quá trình Gaussian (GPR) và mô hình tuổi-thời kỳ-tập hợp để đánh giá các mẫu không gian-thời gian, mối quan hệ với mức độ xã hội-địa lý, và các hiệu ứng độc lập của tuổi tác, thời kỳ và tập hợp từ năm 1990 đến 2019. Tóm lại, gánh nặng toàn cầu của COPD do nhiệt độ không tối ưu cho thấy xu hướng giảm nhưng vẫn nghiêm trọng hơn ở người cao tuổi, nam giới, khu vực Châu Á, và các khu vực có chỉ số xã hội-địa lý (SDI) thấp. Ngoài ra, gánh nặng do lạnh lớn hơn gánh nặng do nhiệt. Mối quan hệ giữa SDI và gánh nặng COPD gây ra bởi nhiệt độ không tối ưu theo mô hình GPR dự kiến có hình dạng U ngược, với điểm uốn quanh SDI 0.45. Bên cạnh đó, các cải thiện đã được quan sát thấy trong hiệu ứng thời kỳ và tập hợp nhưng còn tương đối hạn chế ở các khu vực SDI thấp và trung bình thấp. Các nhà quản lý y tế công cộng nên thực hiện nhiều chương trình có mục tiêu hơn để giảm thiểu gánh nặng này chủ yếu ở các quốc gia có SDI thấp.

Từ khóa

#bệnh phổi tắc nghẽn mạn tính #gánh nặng bệnh tật #nhiệt độ không tối ưu #hồi quy quá trình Gaussian #chỉ số xã hội-địa lý

Tài liệu tham khảo

Anderson GB, Dominici F, Wang Y, McCormack MC, Bell ML, Peng RD (2013) Heat-related emergency hospitalizations for respiratory diseases in the Medicare population. Am J Respir Crit Care Med 187:1098–1103. https://doi.org/10.1164/rccm.201211-1969OC Bai J, Shi F, Ma Y, Yang D, Yu C, Cao J (2022) The global burden of type 2 diabetes attributable to Tobacco: a secondary analysis from the Global Burden of Disease Study 2019. Front Endocrinol (Lausanne) 13:905367. https://doi.org/10.3389/fendo.2022.905367 Bai J, Zhao Y, Yang D, Ma Y, Yu C (2022b) Secular trends in chronic respiratory diseases mortality in Brazil, Russia, China, and South Africa: a comparative study across main BRICS countries from 1990 to 2019. BMC Public Health 22:91. https://doi.org/10.1186/s12889-021-12484-z Brauer M, Aravkin AY, He J, Burkart KG (2021) Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the Global Burden of Disease Study. Lancet 398:685 Child GBD et al (2019) Diseases, injuries, and risk factors in child and adolescent health, 1990 to 2017: findings from the global burden of diseases, injuries, and risk factors 2017 study. JAMA Pediatr 173:e190337. https://doi.org/10.1001/jamapediatrics.2019.0337 Collaborators GCRD (2017a) Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med 5:691–706. https://doi.org/10.1016/s2213-2600(17)30293-x Collaborators GDaIIaP (2017b) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1211–1259. https://doi.org/10.1016/s0140-6736(17)32154-2 Collaborators GDaIIaP (2018a) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:1789–1858. https://doi.org/10.1016/s0140-6736(18)32279-7 Collaborators GRF (2018b) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:1923–1994. https://doi.org/10.1016/s0140-6736(18)32225-6 Collaborators GCRD (2020a) Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med 8:585–596. https://doi.org/10.1016/s2213-2600(20)30105-3 Collaborators GDaI (2020b) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:1204–1222. https://doi.org/10.1016/s0140-6736(20)30925-9 Collaborators GRF (2020c) Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:1223–1249. https://doi.org/10.1016/s0140-6736(20)30752-2 Conlon KC, Rajkovich NB, White-Newsome JL, Larsen L, O’Neill MS (2011) Preventing cold-related morbidity and mortality in a changing climate. Maturitas 69:197–202. https://doi.org/10.1016/j.maturitas.2011.04.004 Ding Z, Li L, Wei R, Dong W, Guo P, Yang S, Liu J, Zhang Q (2016) Association of cold temperature and mortality and effect modification in the subtropical plateau monsoon climate of Yuxi, China. Environ Res 150:431–437. https://doi.org/10.1016/j.envres.2016.06.029 Donaldson GC, Seemungal T, Jeffries DJ, Wedzicha JA (1999) Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease. Eur Respir J 13:844–849 Haagsma JA et al (2020) Burden of injury along the development spectrum: associations between the socio-demographic Index and disability-adjusted life year estimates from the Global Burden of Disease Study 2017. Inj Prev 26:i12–i26. https://doi.org/10.1136/injuryprev-2019-043296 Hansel NN, McCormack MC, Kim V (2016) The effects of air pollution and temperature on COPD. COPD 13:372–379. https://doi.org/10.3109/15412555.2015.1089846 Hayes D Jr, Collins PB, Khosravi M, Lin RL, Lee LY (2012) Bronchoconstriction triggered by breathing hot humid air in patients with asthma: role of cholinergic reflex. Am J Respir Crit Care Med 185:1190–1196. https://doi.org/10.1164/rccm.201201-0088OC He L, Xue B, Wang B, Liu C, de Porras DGR, Delclos GL, Hu M, Luo B, Zhang K (2022) Impact of high, low, and non-optimum temperatures on chronic kidney disease in a changing climate, 1990–2019: a global analysis. Environ Res 212:113172. https://doi.org/10.1016/j.envres.2022.113172 Huang Y, Yang J, Chen J, Shi H, Lu X (2022) Association between ambient temperature and age-specific mortality from the elderly: epidemiological evidence from the Chinese prefecture with most serious aging. Environ Res 211:113103. https://doi.org/10.1016/j.envres.2022.113103 Konstantinoudis G, Minelli C, Vicedo-Cabrera AM, Ballester J, Gasparrini A, Blangiardo M (2022) Ambient heat exposure and COPD hospitalisations in England: a nationwide case-crossover study during 2007–2018. Thorax. https://doi.org/10.1136/thoraxjnl-2021-218374 Koskela HO, Koskela AK, Tukiaineu HO (1996) Bronchoconstriction due to cold weather in COPD. The roles of direct airway effects and cutaneous reflex mechanisms. Chest 110:632–636. https://doi.org/10.1378/chest.110.3.632 Li M, Li Q, Yang G, Kolosov VP, Perelman JM, Zhou XD (2011) Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J Allergy Clin Immunol 128:626–34.e1–5. https://doi.org/10.1016/j.jaci.2011.04.032 Liu Z, Jiang Y, Yuan H, Fang Q, Cai N, Suo C, Jin L, Zhang T, Chen X (2019) The trends in incidence of primary liver cancer caused by specific etiologies: results from the Global Burden of Disease Study 2016 and implications for liver cancer prevention. J Hepatol 70:674–683. https://doi.org/10.1016/j.jhep.2018.12.001 Liu C, Wang B, Liu S, Li S, Zhang K, Luo B, Yang A (2021) Type 2 diabetes attributable to PM2.5: A global burden study from 1990 to 2019. Environ Int 156:106725. https://doi.org/10.1016/j.envint.2021.106725 Michelozzi P et al (2009) High temperature and hospitalizations for cardiovascular and respiratory causes in 12 European cities. Am J Respir Crit Care Med 179:383–389. https://doi.org/10.1164/rccm.200802-217OC Mu Z, Chen PL, Geng FH, Ren L, Gu WC, Ma JY, Peng L, Li QY (2017) Synergistic effects of temperature and humidity on the symptoms of COPD patients. Int J Biometeorol 61:1919–1925. https://doi.org/10.1007/s00484-017-1379-0 Mubarik S, Yu Y, Wang F, Malik SS, Liu X, Fawad M, Shi F, Yu C (2022) Epidemiological and sociodemographic transitions of female breast cancer incidence, death, case fatality and DALYs in 21 world regions and globally, from 1990 to 2017: an age-period-cohort analysis. J Adv Res 37:185–196. https://doi.org/10.1016/j.jare.2021.07.012 Scovronick N, Sera F, Acquaotta F, Garzena D, Fratianni S, Wright CY, Gasparrini A (2018) The association between ambient temperature and mortality in South Africa: a time-series analysis. Environ Res 161:229–235. https://doi.org/10.1016/j.envres.2017.11.001 Song J, Qin W, Pan R, Yi W, Song S, Cheng J, Su H (2022) A global comprehensive analysis of ambient low temperature and non-communicable diseases burden during 1990–2019. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-022-20442-4 Sun S, Laden F, Hart JE, Qiu H, Wang Y, Wong CM, Lee RS, Tian L (2018) Seasonal temperature variability and emergency hospital admissions for respiratory diseases: a population-based cohort study. Thorax 73:951–958. https://doi.org/10.1136/thoraxjnl-2017-211333 Tseng CM, Chen YT, Ou SM, Hsiao YH, Li SY, Wang SJ, Yang AC, Chen TJ, Perng DW (2013) The effect of cold temperature on increased exacerbation of chronic obstructive pulmonary disease: a nationwide study. PLoS One 8:e57066. https://doi.org/10.1371/journal.pone.0057066 Wang N, Mengersen K, Tong S, Kimlin M, Zhou M, Hu W (2020) Global, regional, and national burden of lung cancer and its attributable risk factors, 1990 to 2017. Cancer 126:4220–4234. https://doi.org/10.1002/cncr.33078 Wilson ML, Fleming KA, Kuti MA, Looi LM, Lago N, Ru K (2018) Access to pathology and laboratory medicine services: a crucial gap. Lancet 391:1927–1938. https://doi.org/10.1016/S0140-6736(18)30458-6 Xu Y, Wang A, Lin X, Xu J, Shan Y, Pan X, Ye J, Shan PF (2020) Global burden and gender disparity of vision loss associated with diabetes retinopathy. Acta Ophthalmol. https://doi.org/10.1111/aos.14644 Yan B, Chebana F, Masselot P, Campagna C, Gosselin P, Ouarda T, Lavigne É (2020) A cold-health watch and warning system, applied to the province of Quebec (Canada). Sci Total Environ 741:140188. https://doi.org/10.1016/j.scitotenv.2020.140188 Zeng W et al (2022) Age-specific disparity in life loss per death attributable to ambient temperature: a nationwide time-series study in China. Environ Res 203:111834. https://doi.org/10.1016/j.envres.2021.111834 Zhao Q, Li S, Coelho M, Saldiva PHN, Xu R, Huxley RR, Abramson MJ, Guo Y (2019) Ambient heat and hospitalisation for COPD in Brazil: a nationwide case-crossover study. Thorax 74:1031–1036. https://doi.org/10.1136/thoraxjnl-2019-213486 Zhou M et al (2019) Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 394:1145–1158 Zou J, Sun T, Song X, Liu YM, Lei F, Chen MM, Chen Z, Zhang P, Ji YX, Zhang XJ, She ZG, Cai J, Luo Y, Wang P, Li H (2022) Distributions and trends of the global burden of COPD attributable to risk factors by SDI, age, and sex from 1990 to 2019: a systematic analysis of GBD 2019 data. Respir Res 23:90. https://doi.org/10.1186/s12931-022-02011-y