Bulk heterojunction perovskite–PCBM solar cells with high fill factor

Nature Photonics - Tập 10 Số 3 - Trang 196-200 - 2016
Chien-Hung Chiang1, Chun‐Guey Wu1
1Research Center for New Generation Photovoltaics, National Central University, Jhong-Li, 32001, Taiwan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

Best Research Cell Efficiency (NREL); http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (2015).

Zhou, H. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. Science 345, 542–546 (2014).

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

You, J. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674–1680 (2014).

Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–320 (2013).

Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapor deposition. Nature 501, 395–398 (2013).

Xiao, Z. et al. Efficient, high yield perovskite photovoltaic devices grown by inter-diffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7, 2619–2623 (2014).

Zhou, H. et al. Photovoltaics: interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Mater. 13, 897–903 (2014).

Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

Mitzi, D. B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials. Prog. Inorg. Chem. 48, 1–121 (2007).

Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A. & Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014).

Chiang, C.-H., Tseng, Z.-L. & Wu, C.-G. Planar heterojunction perovskite/ PC71BM solar cells with enhanced open-circuit voltage via (2/1)-step spin- coating process. J. Mater. Chem. A 2, 15897–15903 (2014).

Wu, C.-G. et al. High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ. Sci. 8, 2725-2733 (2015).

Yang, B. et al. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions. J. Am. Chem. Soc. 137, 9210–9213 (2015).

Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nature Photon. 9, 106–112 (2015).

Park, N.-G. Organometal perovskite light absorbers toward a 20% efficiency low cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).

McGehee, M. D. Materials science: fast-track solar cells. Nature 501, 323–325 (2013).

Kazim, S., Nazeeruddin, M. K., Grätzel, M. & Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem. Int. Ed. 53, 2812–2824 (2014).

Hodes, G. & Cahen, D. Perovskite cells roll forward. Nature Photon. 8, 87–99 (2014).

Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E. & Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Commun. 4, 2761 (2014).

D'Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Commun. 5, 3586 (2014).

Heo, J. H., Han, H. J., Kim, D., Ahn, T. K. & Im, S. H. 18.1% hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells. Energ. Environ. Sci. 8, 1602–1608 (2015).

Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

Wang, X. et al. Transient photocurrent and photovoltage studies on charge transport in dye sensitized solar cells made from the composites of TiO2 nanofibers and nanoparticles. Appl. Phys. Lett. 98, 082114 (2011).

Xiao, Z. et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014).

O'Regan, B. C., Scully, S., Mayer, A., Palomares, E. & Durrant, J. The effect of Al2O3 barrier layers in TiO2/Dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. J. Phys. Chem. B 109, 4616–4623 (2005).

Snaith, H. J. et al. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Lett. 7, 3372–3376 (2007).

Nakade, S., Kambe, S., Kitamura, T., Wada, Y. & Yanagida, S. Effects of lithium ion density on electron transport in nanoporous TiO2 electrodes. J. Phys. Chem. B 105, 9150–9152 (2001).

Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1514 (2014).

Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012).

Sun, S. et al. The origin of high efficiency in low-temperature solution- processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014).

Wang, Q. et al. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 7, 2359–2365 (2014).