Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes

Nature Energy - Tập 4 Số 6 - Trang 484-494
Gui‐Liang Xu1, Qiang Liu2, Kenneth K. S. Lau3, Yuzi Liu4, Xiang Liu1, Han Gao1, Xinwei Zhou4, Zhengtang Luo2, Yang Ren5, LI Yon2, Minhua Shao2, Minggao Ouyang6, Feng Pan7, Zonghai Chen1, Khalil Amine8, Guohua Chen9
1Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
2Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology,, Kowloon, Hong Kong, China
3Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
4Centre for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
5X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
6State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, China
7School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, China
8Materials Science and Engineering, Stanford University, Stanford, CA, USA
9Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sun, Y. K. et al. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009).

Lu, J., Wu, T. P. & Amine, K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2, 17011 (2017).

Ryu, H.-H., Park, K.-J., Yoon, C. S. & Sun, Y. K Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6≤ x ≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30, 1155–1163 (2018).

Yan, P. F., Zheng, J. M., Zhang, J. -G. & Wang, C. M. Atomic resolution structural and chemical imaging revealing the sequential migration of Ni, Co, and Mn upon the battery cycling of layered cathode. Nano Lett. 17, 3946–3951 (2017).

Sun, Y. K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).

Lu, J. et al. The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 11, 1031–1038 (2016).

Lu, J. et al. Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. Nat. Commun. 5, 6693 (2014).

Liu, Q. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 3, 936–943 (2018).

Kim, U. H. et al. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ. Sci. 11, 1271–1279 (2018).

Jung, S. K. et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater. 4, 1300787 (2014).

Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

Liu, H. et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett. 17, 3452–3457 (2017).

Kim, J. et al. A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy Environ. Sci. 11, 1449–1459 (2018).

Yan, P. F. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

Kim, J. et al. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 8, 1702028 (2018).

Zhan, C., Wu, T. P., Lu, J. & Amine, K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—a critical review. Energy Environ. Sci. 11, 243–257 (2018).

Chen, Z., Qin, Y., Amine, K. & Sun, Y. K. Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 20, 7606–7612 (2010).

Miller, D. J., Proff, C., Wen, J., Abraham, D. P. & Bareño, J. Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy. Adv. Energy Mater. 3, 1098–1103 (2013).

Lu, J. et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 3383 (2013).

Li, X. et al. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 7, 768–778 (2014).

Mohanty, D. et al. Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: preventing surface phase transitions for high-voltagelithium-ion batteries. Sci. Rep. 6, 26532 (2016).

Martha, S. K. et al. Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. J. Mater. Chem. A 1, 5587–5595 (2013).

Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572 (2016).

Yan, P. F. et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 3, 600–605 (2018).

Im, S. G. & Gleason, K. K. Systematic control of the electrical conductivity of poly (3, 4-ethylenedioxythiophene) via oxidative chemical vapor deposition. Macromolecules 40, 6552–6556 (2007).

Tenhaeff, W. E. & Gleason, K. K. Initiated and oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD. Adv. Funct. Mater. 18, 979–992 (2008).

Malti, A. et al. An organic mixed ion–electron conductor for power electronics. Adv. Sci. 3, 1500305 (2016).

Lee, E. J. et al. Development of microstrain in aged lithium transition metal oxides. Nano Lett. 14, 4873–4880 (2014).

Wang, Q. et al. Origin of structural evolution in capacity degradation for overcharged NMC622 via operando coupled investigation. ACS Appl. Mater. Interfaces 9, 24731–24742 (2017).

Liu, W. et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457 (2015).

Zhan, C. et al. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Nat. Commun. 4, 2437 (2013).

Lee, S., Paine, D. C. & Gleason, K. K. Heavily doped poly(3,4-ethylenedioxythiophene) thin films with high carrier mobility deposited using oxidative CVD: conductivity stability and carrier transport. Adv. Funct. Mater. 24, 7187–7196 (2014).

Massonnet, N., Carella, A., Geyer, A. D., Faure-Vincent, J. & Simonata, J.-P. Metallic behaviour of acid doped highly conductive polymers. Chem. Sci. 6, 412–417 (2015).

Zheng, J. et al. Tuning of thermal stability in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc. 138, 13326–13334 (2016).

Bak, S.-M. et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chem. Mater. 25, 337–351 (2013).

Yan, P. F. et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat. Commun. 9, 2437 (2018).

Chen, Z. et al. Study of thermal decomposition of Li1‐x(Ni1/3Mn1/3Co1/3)0.9O2 using in-situ high‐energy X‐ray diffraction. Adv. Energy Mater. 3, 729–736 (2013).

Liu, X. et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2, 1–18 (2018).

Chen, Z. et al. New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nat. Commun. 4, 1513 (2013).

Zheng, H., Sun, Q., Liu, G., Song, X. & Battaglia, V. S. Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells. J. Power Sources 207, 134–140 (2012).