Building large-scale unimolecular scaffolding for electronic devices

Materials Today Chemistry - Tập 26 - Trang 101067 - 2022
E. Escorihuela1,2, A. Concellón3, I. Marín4, V.J. Kumar5, L. Herrer1,2,6, S.A. Moggach5, A. Vezzoli7, R.J. Nichols7, P.J. Low5, P. Cea1,2,6, J.L. Serrano1,4, S. Martín1,2,6
1Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
2Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
3Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain
5School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
6Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Edificio I+D+i, 50018, Zaragoza, Spain
7Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom

Tài liệu tham khảo

Zhang, 2020, Multi-functional flexible 2D carbon nanostructured networks, Nat. Commun., 11, 5134, 10.1038/s41467-020-18977-6 Santos, 2021, Macroscopic materials assembled from nanoparticle superlattices, Nature, 591, 586, 10.1038/s41586-021-03355-z Xu, 2021, Nature-inspired hierarchical materials for sensing and energy storage applications, Chem. Soc. Rev., 50, 4856, 10.1039/C8CS00652K Su, 2016, Chemical principles of single-molecule electronics, Nat. Rev. Mater., 1, 16002, 10.1038/natrevmats.2016.2 Li, 2010, Nanogap electrodes, Adv. Mater., 22, 286, 10.1002/adma.200900864 Sun, 2014, Single-molecule electronics: from chemical design to functional devices, Chem. Soc. Rev., 43, 7378, 10.1039/C4CS00143E Xiang, 2016, Molecular-scale electronics: from concept to function, Chem. Rev., 116, 4318, 10.1021/acs.chemrev.5b00680 Jeong, 2017, High-yield functional molecular electronic devices, ACS Nano, 11, 6511, 10.1021/acsnano.7b02967 Liu, 2019, Quantum interference effects in charge transport through single-molecule junctions: detection, manipulation, and application, Acc. Chem. Res., 52, 151, 10.1021/acs.accounts.8b00429 Fuller, 2022, Molecular electronics sensors on a scalable semiconductor chip: a platform for single-molecule measurement of binding kinetics and enzyme activity, Proc. Natl. Acad. Sci. USA, 119, 10.1073/pnas.2112812119 Liu, 2008, Length-dependent conductance of molecular wires and contact resistance in metal-molecule-metal junctions, ChemPhysChem, 9, 1416, 10.1002/cphc.200800032 Haiss, 2009, Impact of junction formation method and surface roughness on single molecule conductance, J. Phys. Chem. C, 113, 5823, 10.1021/jp811142d Vilan, 2017, Large-area, ensemble molecular electronics: motivation and challenges, Chem. Rev., 117, 4248, 10.1021/acs.chemrev.6b00595 Nitzan, 2003, Electron transport in molecular wire junctions, Science, 300, 1384, 10.1126/science.1081572 Gschneidtner, 2013, Progress in self-assembled single-molecule electronic devices, J. Mater. Chem. C, 1, 7127, 10.1039/c3tc31483a Casalini, 2017, Self-assembled monolayers in organic electronics, Chem. Soc. Rev., 46, 40, 10.1039/C6CS00509H Herrer, 2021, pH control of conductance in a pyrazolyl Langmuir-Blodgett monolayer, J. Mater. Chem. C, 9, 2882, 10.1039/D0TC05658H Escorihuela, 2020, Towards the design of effective multipodal contacts for use in the construction of Langmuir-Blodgett films and molecular junctions, J. Mater. Chem. C, 8, 672, 10.1039/C9TC04710G Herrer, 2019, Single molecule vs. large area design of molecular electronic devices incorporating an efficient 2-aminepyridine double anchoring group, Nanoscale, 11, 15871, 10.1039/C9NR05662A Moneo, 2018, Towards molecular electronic devices based on 'all-carbon' wires, Nanoscale, 10, 14128, 10.1039/C8NR02347F Vuillaume, 2019, Molecular electronics: from single-molecule to large-area devices, ChemPlusChem, 84, 1215, 10.1002/cplu.201900171 Akkerman, 2006, Towards molecular electronics with large-area molecular junctions, Nature, 441, 69, 10.1038/nature04699 Gorenskaia, 2021, Fabrication of metallic and non-metallic top electrodes for large-area molecular junctions, Nanoscale, 13, 9055, 10.1039/D1NR00917F Herrer, 2020, Nanofabrication techniques in large-area molecular electronic devices, Appl. Sci., 10, 6064, 10.3390/app10176064 Song, 2007, Intermolecular chain-to-chain tunneling in metal-alkanethiol-metal junctions, J. Am. Chem. Soc., 129, 3806, 10.1021/ja068875m Dubi, 2014, Transport through self-assembled monolayer molecular junctions: role of in-plane dephasing, J. Phys. Chem. C, 118, 21119, 10.1021/jp503887p Slowinski, 1997, Through-bond and chain-to-chain coupling. Two pathways in electron tunneling through liquid alkanethiol monolayers on mercury electrodes, J. Am. Chem. Soc., 119, 11910, 10.1021/ja971921l Jacob, 2014, Monitoring the reversible photoisomerization of an azobenzene-functionalized molecular triazatriangulene platform on Au(111) by IRRAS, Phys. Chem. Chem. Phys., 16, 22643, 10.1039/C4CP03438D Jung, 2011, Azobenzene-containing triazatriangulenium adlayers on Au(111): structural and spectroscopic characterization, Langmuir, 27, 5899, 10.1021/la104654p Kuhn, 2010, Self-assembly of triazatriangulenium-based functional adlayers on Au(111) surfaces, Phys. Chem. Chem. Phys., 12, 4481, 10.1039/b922882a Otte, 2014, Ordered monolayers of free-standing porphyrins on gold, J. Am. Chem. Soc., 136, 11248, 10.1021/ja505563e Wei, 2014, Triazatriangulene as binding group for molecular electronics, Langmuir, 30, 14868, 10.1021/la504056v Wang, 2018, Triazatriangulene platform for self-assembled monolayers of free-standing diarylethene, Sci. China Mater., 61, 1345, 10.1007/s40843-018-9270-1 Ferreira, 2011, Stepwise preparation and characterization of molecular wires made of zinc octaethylporphyrin complexes bridged by 4,4 '-bipyridine on Hopg, Nanotechnology, 22, 10.1088/0957-4484/22/43/435604 Ferreira, 2014, Conductance of well-defined porphyrin self-assembled molecular wires up to 14 nm in length, J. Phys. Chem. C, 118, 7229, 10.1021/jp501122n Wang, 2020, Layer-by-layer epitaxy of porphyrin-ligand Fe(II)-Fe(III) nanoarchitectures for advanced metal-organic framework growth, ACS Appl. Nano Mater., 3, 11752, 10.1021/acsanm.0c02237 Otsuki, 2010, STM studies on porphyrins, Coord. Chem. Rev., 254, 2311, 10.1016/j.ccr.2009.12.038 Ge, 2009, Controlled formation of an axially bonded co-phthalocyanine dimer, J. Am. Chem. Soc., 131, 6096, 10.1021/ja900484c Matino, 2010, Single azopyridine-substituted porphyrin molecules for configurational and electronic switching, Chem. Commun., 46, 6780, 10.1039/c0cc00959h Concellon, 2018, Proton-conductive materials formed by coumarin photocrosslinked ionic liquid crystal dendrimers, J. Mater. Chem. C, 6, 1000, 10.1039/C7TC05009G Concellon, 2018, Size-selective adsorption in nanoporous polymers from coumarin photo-cross-linked columnar liquid crystals, Macromolecules, 51, 2349, 10.1021/acs.macromol.8b00067 Lu, 2009, From tunneling to hopping: a comprehensive investigation of charge transport mechanism in molecular junctions based on oligo(p-phenylene ethynylene)s, ACS Nano, 3, 3861, 10.1021/nn9012687 Hieringer, 2011, The surface trans effect: influence of axial ligands on the surface chemical bonds of adsorbed metalloporphyrins, J. Am. Chem. Soc., 133, 6206, 10.1021/ja1093502 Haiss, 1991, Atomic resolution scanning tunneling microscopy images of Au(111) surfaces in air and polar organic-solvents, J. Chem. Phys., 95, 2193, 10.1063/1.460967 Sauerbrey, 1959, Verwendung von schwingquarzen zur wagung dunner schichten und zur mikrowagung, Z. Phys., 155, 206 Polzonetti, 1999, Platinum complex/Zn-porphyrin macrosystem assemblies: electronic structure and conformational investigation by x-ray photoelectron spectroscopy, J. Vac. Sci. Technol. A, 17, 832, 10.1116/1.581655 Lavallee, 1979, X-ray photoelectron-spectra of N-methyltetraphenylporphyrins – evidence for a correlation of binding-energies with metal-nitrogen bond distances, Inorg. Chem., 18, 1776, 10.1021/ic50197a010 Sarno, 2000, Self-assembled molecular architectures on surfaces: new strategies involving metal-organic copolymers, Langmuir, 16, 6191, 10.1021/la000020e Sarno, 2001, X-ray photoelectron spectroscopy as a probe of intermolecular interactions in porphyrin polymer thin films, Inorg. Chem., 40, 6308, 10.1021/ic010315v Paul, 2008, Charge transfer through single-stranded peptide nucleic acid composed of thymine Nucleotides, J. Phys. Chem. C, 112, 7233, 10.1021/jp711764q Venkatramani, 2011, Evidence for a near-resonant charge transfer mechanism for double-stranded peptide nucleic acid, J. Am. Chem. Soc., 133, 62, 10.1021/ja107622m Wierzbinski, 2013, The single-molecule conductance and electrochemical electron-transfer rate are related by a power law, ACS Nano, 7, 5391, 10.1021/nn401321k Herrer, 2017, High surface coverage of a self-assembled monolayer by in situ synthesis of palladium nanodeposits, Nanoscale, 9, 13281, 10.1039/C7NR03365F Haiss, 2003, Redox state dependence of single molecule conductivity, J. Am. Chem. Soc., 125, 15294, 10.1021/ja038214e Ballesteros, 2015, Single gold atom containing oligo(phenylene)ethynylene: assembly into LB films and electrical characterization, J. Phys. Chem. C, 119, 784, 10.1021/jp510078w Xu, 2003, Measurement of single-molecule resistance by repeated formation of molecular junctions, Science, 301, 1221, 10.1126/science.1087481 Nichols, 2010, The experimental determination of the conductance of single molecules, Phys. Chem. Chem. Phys., 12, 2801, 10.1039/b922000c Ferradas, 2016, Low variability of single-molecule conductance assisted by bulky metal-molecule contacts, RSC Adv., 6, 75111, 10.1039/C6RA15477H