Building epithelial architecture: insights from three-dimensional culture models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hogan, B. & Kolodzeij, P. A. Molecular mechanisms of tubulogenesis. Nature Rev. Genetics 3, 513–523 (2002).
Metzger, R. J. & Krasnow, M. A. Genetic control of branching morphogenesis. Science 284, 1635–1639 (1999).
Vainio, S. & Lin, Y. Coordinating early kidney development: lessons from gene targeting. Nature Rev. Genetics 3, 529–539 (2002).
Mostov, K. E., Verges, M. & Altschuler, Y. Membrane traffic in polarized epithelial cells. Curr. Opin. Cell Biol. 12, 483–490 (2000).
Hagios, C., Lochter, A. & Bissell, M. J. Tissue architecture: the ultimate regulator of epithelial function? Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 857–870 (1998).
Walpita, D. & Hay, E. Studying actin-dependent processes in tissue culture. Nature Rev. Mol. Cell Biol. 3, 137–141 (2002).
Montesano, R., Matsumoto, K., Nakamura, T. & Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901–908 (1991).
Montesano, R., Schaller, G. & Orci, L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66, 697–711 (1991).
Saelman, E. U., Keely, P. J. & Santoro, S. A. Loss of MDCK cellα2β1 integrin expression results in reduced cyst formation, failure of hepatocyte growth factor/scatter factor-induced branching morphogenesis, and increased apoptosis. J. Cell Sci. 108, 3531–3540 (1995).
Ervasti, J. M. & Campbell, K. P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122, 809–823 (1993).
Yamada, K. M. & Geiger, B. Molecular interactions in cell adhesion complexes. Curr. Opin. Cell Biol. 9, 76–85 (1997).
Troxell, M. L., Loftus, D. J., Nelson, W. J. & Marrs, J. A. Mutant cadherin affects epithelial morphogenesis and invasion, but not transformation. J. Cell Sci. 114, 1237–1246 (2001).
Zuk, A. & Matlin, K. S. Apical β1 integrin in polarized MDCK cells mediates tubulocyst formation in response to type I collagen overlay. J. Cell Sci. 109, 1875–1889 (1996).
Ojakian, G. K. & Schwimmer, R. Regulation of epithelial cell surface polarity reversal by β1 integrins. J. Cell Sci. 107, 561–576 (1994).
Schwimmer, R. & Ojakian, G. K. The α2β1 integrin regulates collagen-mediated MDCK epithelial membrane remodeling and tubule formation. J. Cell Sci. 108, 2487–2498 (1995).
Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).
Chambard, M., Verrier, B., Gabrion, J. & Mauchamp, J. Polarity reversal of inside–out thyroid follicles cultured within collagen gel: reexpression of specific functions. Biol. Cell 51, 315–325 (1984).
Wang, A. Z., Ojakian, G. K. & Nelson, W. J. Steps in the morphogenesis of a polarized epithelium. I. Uncoupling the roles of cell–cell and cell–substratum contact in establishing plasma membrane polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci. 95, 137–151 (1990).
Wang, A. Z., Ojakian, G. K. & Nelson, W. J. Steps in the morphogenesis of a polarized epithelium. II. Disassembly and assembly of plasma membrane domains during reversal of epithelial cell polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci. 95, 153–165 (1990).
Wang, A. Z., Wang, J. C., Ojakian, G. K. & Nelson, W. J. Determinants of apical membrane formation and distribution in multicellular epithelial MDCK cysts. Am. J. Physiol. 267, C473–C481 (1994).
Yeaman, C., Grindstaff, K. K. & Nelson, W. J. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev. 79, 73–98 (1999).
Ojakian, G. K., Nelson, W. J. & Beck, K. A. Mechanisms for de novo biogenesis of an apical membrane compartment in groups of simple epithelial cells surrounded by extracellular matrix. J. Cell Sci. 110, 2781–2794 (1997).
Yap, A. S., Stevenson, B. R., Armstrong, J. W., Keast, J. R. & Manley, S. W. Thyroid epithelial morphogenesis in vitro: a role for bumetanide-sensitive Cl− secretion during follicular lumen development. Exp. Cell Res. 213, 319–326 (1994).
Vega-Salas, D. E., Salas, P. J. & Rodriguez-Boulan, E. Exocytosis of vacuolar apical compartment (VAC): a cell–cell contact controlled mechanism for the establishment of the apical plasma membrane domain in epithelial cells. J. Cell Biol. 107, 1717–1728 (1988).
Davis, G. E. & Bayless, K. K. An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation (in the press).
Colony, P. C. & Neutra, M. R. Epithelial differentiation in the fetal rat colon. I. Plasma membrane phosphatase activities. Dev. Biol. 97, 349–363 (1983).
Gilbert, T. & Rodriguez-Boulan, E. Induction of vacuolar apical compartments in the Caco-2 intestinal epithelial cell line. J. Cell Sci. 100, 451–458 (1991).
Yap, A. S., Stevenson, B. R., Keast, J. R. & Manley, S. W. Cadherin-mediated adhesion and apical membrane assembly define distinct steps during thyroid epithelial polarization and lumen formation. Endocrinology 136, 4672–4680 (1995).
Coucouvanis, E. & Martin, G. R. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83, 279–287 (1995).
Lin, H. H., Yang, T. P., Jiang, S. T., Yang, H. Y. & Tang, M. J. Bcl-2 overexpression prevents apoptosis-induced Madin-Darby canine kidney simple epithelial cyst formation. Kidney Int. 55, 168–178 (1999).
Blatchford, D. R. et al. Influence of microenvironment on mammary epithelial cell survival in primary culture. J. Cell Physiol. 181, 304–311 (1999).
Muthuswamy, S. K., Li, D., Lelievre, S., Bissell, M. J. & Brugge, J. S. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nature Cell Biol. 3, 785–792 (2001).
Klein, G., Langegger, M., Timpl, R. & Ekblom, P. Role of laminin A chain in the development of epithelial cell polarity. Cell 55, 331–341 (1988).
Schuger, L., Yurchenco, P., Relan, N. K. & Yang, Y. Laminin fragment E4 inhibition studies: basement membrane assembly and embryonic lung epithelial cell polarization requires laminin polymerization. Int. J. Dev. Biol. 42, 217–220 (1998).
Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).
O'Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nature Cell Biol. 3, 831–838 (2001).
Gudjonsson, T. et al. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J. Cell Sci. 115, 39–50 (2002).
Birchmeier, C. & Gherardi, E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 8, 404–410 (1998).
Schmidt, C. et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699–702 (1995).
Uehara, Y. et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373, 702–705 (1995).
Sonnenberg, E., Meyer, D., Weidner, K. M. & Birchmeier, C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J. Cell Biol. 123, 223–235 (1993).
Woolf, A. S. et al. Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros. J. Cell Biol. 128, 171–184 (1995).
Santos, O. F. et al. Involvement of hepatocyte growth factor in kidney development. Dev. Biol. 163, 525–529 (1994).
Van Adelsberg, J. et al. Activation of hepatocyte growth factor (HGF) by endogenous HGF activator is required for metanephric kidney morphogenesis in vitro. J. Biol. Chem. 276, 15099–15106 (2001).
Sakurai, H., Barros, E. J., Tsukamoto, T., Barasch, J. & Nigam, S. K. An in vitro tubulogenesis system using cell lines derived from the embryonic kidney shows dependence on multiple soluble growth factors. Proc. Natl Acad. Sci. USA 94, 6279–6284 (1997).
Pollack, A. L., Runyan, R. B. & Mostov, K. E. Morphogenetic mechanisms of epithelial tubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell–cell contact during scatter factor/hepatocyte growth factor-induced tubulogenesis. Dev. Biol. 204, 64–79 (1998).
Savagner, P. Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition. Bioessays 23, 912–923 (2001).
Nathke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. & Nelson, W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J. Cell Biol. 134, 165–179 (1996).
Pollack, A. L., Barth, A. I. M., Altschuler, Y., Nelson, W. J. & Mostov, K. E. Dynamics of β-catenin interactions with APC protein regulate epithelial tubulogenesis. J. Cell Biol. 137, 1651–1662 (1997).
Gautreau, A., Louvard, D. & Arpin, M. Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol. 150, 193–203 (2000).
TerBush, D. R., Maurice, T., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).
Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell–cell contacts and specifies transport vesicle delivery to the basal–lateral membrane in epithelial cells. Cell 93, 731–740 (1998).
Lipschutz, J. H. et al. Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins. Mol. Biol. Cell 11, 4259–4275 (2000).
Kadono, Y. et al. Membrane type 1-matrix metalloproteinase is involved in the formation of hepatocyte growth factor/scatter factor-induced branching tubules in Madin–Darby Canine Kidney epithelial cells. Biochem. Biophys. Res. Commun. 251, 681–687 (1998).
Hotary, K., Allen, E., Punturieri, A., Yana, I. & Weiss, S. J. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J. Cell Biol. 149, 1309–1323 (2000).
Reinsch, S. & Karsenti, E. Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J. Cell Biol. 126, 1509–1526 (1994).
Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998).
Lu, B., Roegiers, F., Jan, L. Y. & Jan, Y. N. Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409, 522–525 (2001).
Petronczki, M. & Knoblich, J. A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nature Cell Biol. 3, 43–49 (2001).