Building and optimising an automatic monitoring system network for outdoor PM2.5: a case study of Ho Chi Minh City
Tóm tắt
PM2.5 exposure data are important for air quality management. Optimal planning and determination of locations where PM2.5 is continuously monitored are important for urban areas in Ho Chi Minh City (HCMC), a megacity with specific environmental problems. Objectives of the study to propose an automatic monitoring system network (AMSN) to measure outdoor PM2.5 concentrations in HCMC using low-cost sensors. Data related to the current monitoring network, population, population density, threshold reference standards set by the National Ambient Air Quality Standard (NAAQS) and the World Health Organisation (WHO), and inventory emissions from various sources, both anthropogenic and biogenic, were obtained. Coupled WRF/CMAQ models were used to simulate PM2.5 concentrations in HCMC. The simulation results were extracted from the grid cells, from which the values of points exceeding the set thresholds were determined. The population coefficient was calculated to determine the corresponding total score (TS). Optimisation of the monitoring locations was statistically performed using Student’s t-test to select the official locations for the monitoring network. TS values ranged from 0.0031 to 3215.9. The TSmin value was reached in the Can Gio district and the TSmax value was reached in SG1. Based on the t-test results, 26 initial locations were proposed for a preliminary configuration, from which 10 optimal monitoring sites were selected to develop the AMSN of outdoor PM2.5 concentration measurements in HCMC towards 2025.
Tài liệu tham khảo
Baldauf, R. W., Lane, D. D., Marotz, G. A., Barkman, H. W., & Pierce, T. (2002). Application of a risk assessment based approach to designing ambient air quality monitoring networks for evaluating non-cancer health impacts. Environmental Monitoring and Assessment, 78(3), 213–227. https://doi.org/10.1023/a:1019920302108
Bang, H. Q., Tram, L. T. B., & Dung, H. M. (2015). Study on the planning of air quality monitoring network and initially monitoring fine particulate matter in Can Tho City. Vietnam. Journal of Science and Technology Development, M2, 85–94.
Beelen, R., Raaschou-Nielsen, O., Stafoggia, M., Andersen, Z. J., Weinmayr, G., Hoffmann, B., Wolf, K., Samoli, E., Fischer, P., Nieuwenhuijsen, M., Vineis, P., Xun, W. W., Katsouyanni, K., Dimakopoulou, K., Oudin, A., Forsberg, B., Modig, L., Havulinna, A. S., Lanki, T., … & Hoek, G. (2014). Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. The Lancet, 383(9919), 785–795. https://doi.org/10.1016/Ss0140-6736(13)62158-3
Briggs, D. J., de Hoogh, C., Gulliver, J., Wills, J., Elliott, P., Kingham, S., & Smallbone, K. (2000). A regression-based method for mapping traffic-related air pollution: Application and testing in four contrasting urban environments. Science of the Total Environment, 253(1), 151–167. https://doi.org/10.1016/S0048-9697(00)00429-0
Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360(9341), 1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8
Bui, L. T., & Nguyen, P. H. (2022a). Evaluation of the annual economic costs associated with PM2.5-based health damage—A case study in Ho Chi Minh City, Vietnam. Air Quality, Atmosphere & Health. https://doi.org/10.1007/s11869-022-01282-0
Bui, L. T., & Nguyen, P. H. (2022b). Ground-level ozone in the Mekong Delta region: Precursors, meteorological factors, and regional transport. Environmental Science and Pollution Research, 0123456789. https://doi.org/10.1007/s11356-022-23819-7
Castro, M., & Pires, J. C. M. (2019). Decision support tool to improve the spatial distribution of air quality monitoring sites. Atmospheric Pollution Research, 10(3), 827–834. https://doi.org/10.1016/j.apr.2018.12.011
Chau, N. T. N., Lien, D. T. A., Phong, N. H., & Long, B. T. (2022). Assessing spatio-temporal distributions and seasonal variations of PM2.5 pollution level status in the Long Xuyen Quadrangle, Vietnam. Vietnam Journal of Hydrometeorology, 736(1), 54–74. https://doi.org/10.36335/VNJHM.2022(736(1)).54-74
Chen, C.-H., Liu, W.-L., & Chen, C.-H. (2006). Development of a multiple objective planning theory and system for sustainable air quality monitoring networks. Science of the Total Environment, 354(1), 1–19. https://doi.org/10.1016/j.scitotenv.2005.08.018
Chow, J. C., Engelbrecht, J. P., Watson, J. G., Wilson, W. E., Frank, N. H., & Zhu, T. (2002). Designing monitoring networks to represent outdoor human exposure. Chemosphere, 49(9), 961–978. https://doi.org/10.1016/S0045-6535(02)00239-4
Department of Statistics Ho Chi Minh City-a. (2019). Part I: Brief introduction of the formation of Key Economic Region of South Vietnam. In General Statistics Office (Vol. 1, Issue 1).
Duc, P. A., & Linh, N. T. M. (2015). Environmental quality monitoring (P. A. Duc (ed.); 1st ed.). Construction Publishing House.
ECCAD. (2020). ECCAD - Emissions of atmospheric compounds and compilation of ancillary data. The GEIA Global Emission InitiAtive Data Portal and Is Part of AERIS, the French Data Service for Atmosphere.
Fan, H., Zhao, C., & Yang, Y. (2020). A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmospheric Environment, 220, 117066. https://doi.org/10.1016/j.atmosenv.2019.117066
Feinberg, S. N., Williams, R., Hagler, G., Low, J., Smith, L., Brown, R., Garver, D., Davis, M., Morton, M., Schaefer, J., & Campbell, J. (2019). Examining spatiotemporal variability of urban particulate matter and application of high-time resolution data from a network of low-cost air pollution sensors. Atmospheric Environment, 213(December 2018), 579–584. https://doi.org/10.1016/j.atmosenv.2019.06.026
GSO. (2020). Completed results of the 2019 Vietnam population and housing census.
Gubry, P., & Le, H. T. (2014). People moving in Ho Chi Minh City. In V. T. Hong, P. Gubry, & L. Van Thanh (Eds.), Roads to the city - Migration to Ho Chi Minh City from a Mekong Delta region (1st ed., Issue May, p. 21). Ho Chi Minh City Publishing House.
Guo, X., Wang, Y., Mei, S., Shi, C., Liu, Y., Pan, L., Li, K., Zhang, B., Wang, J., Zhong, Z., & Dong, M. (2022). Monitoring and modelling of PM2.5 concentration at subway station construction based on IoT and LSTM algorithm optimization. Journal of Cleaner Production, 360(May), 132179. https://doi.org/10.1016/j.jclepro.2022.132179
Hankey, S., & Marshall, J. D. (2015). Land use regression models of on-road particulate air pollution (particle number, black carbon, PM2.5, particle size) using mobile monitoring. Environmental Science and Technology, 49(15), 9194–9202. https://doi.org/10.1021/acs.est.5b01209
HCMC CEM. (2019). Report on the current state of air environment in Ho Chi Minh City in 2018.
HCMC Statistical Office. (2019a). Ho Chi Minh City statistical yearbook 2018. Ho Chi Minh City Statistical Office.
HCMC Statistical Office. (2019b). Statistical yearbook of Ho Chi Minh City 2018.
HCMC Statistical Office. (2020). Statistical yearbook of Ho Chi Minh City 2019.
HCMC Statistical Office. (2021). Statistical yearbook of Ho Chi Minh City 2020.
Holstius, D. M., Pillarisetti, A., Smith, K. R., & Seto, E. (2014). Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmospheric Measurement Techniques, 7(4), 1121–1131. https://doi.org/10.5194/amt-7-1121-2014
Kanaroglou, P. S., Jerrett, M., Morrison, J., Beckerman, B., Arain, M. A., Gilbert, N. L., & Brook, J. R. (2005). Establishing an air pollution monitoring network for intra-urban population exposure assessment: A location-allocation approach. Atmospheric Environment, 39(13), 2399–2409. https://doi.org/10.1016/j.atmosenv.2004.06.049
Kao, J.-J., & Hsieh, M.-R. (2006). Utilizing multiobjective analysis to determine an air quality monitoring network in an industrial district. Atmospheric Environment, 40(6), 1092–1103. https://doi.org/10.1016/j.atmosenv.2005.11.003
Kumar, N. (2009). An optimal spatial sampling design for intra-urban population exposure assessment. Atmospheric Environment, 43(5), 1153–1155. https://doi.org/10.1016/j.atmosenv.2008.10.055
Kumar, N., Chu, A., & Foster, A. (2007). An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmospheric Environment, 41(21), 4492–4503. https://doi.org/10.1016/j.atmosenv.2007.01.046
Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., & Britter, R. (2015). The rise of low-cost sensing for managing air pollution in cities. Environment International, 75, 199–205. https://doi.org/10.1016/j.envint.2014.11.019
Le, H. A., Thanh, N. V., Nam, B. H., & Bok, L. S. (2021). Research, design and test a low-cost sensor system, used in air quality monitoring. Environmental Magazine (VEM)- Green Solutions and Technologies, 1, 47–50.
Li, Y., Yuan, Z., Chen, L. W. A., Pillarisetti, A., Yadav, V., Wu, M., Cui, H., & Zhao, C. (2022). From air quality sensors to sensor networks: Things we need to learn. Sensors and Actuators B: Chemical, 351(October 2021), 1–9. https://doi.org/10.1016/j.snb.2021.130958
Linh, V. T., Liem, N. D., Dung, H. M., & Loi, N. K. (2019). Research on application of models for trending evaluation of flood and salinization in climate change context. Pilot research in Ho Chi Minh City. Vietnam Journal of Hydrometeorology, 2019(EME2), 98–110. https://doi.org/10.36335/VNJHM.2019(EME2).98-110
Macpherson, A. J., Simon, H., Langdon, R., & Misenheimer, D. (2017). A mixed integer programming model for National Ambient Air Quality Standards (NAAQS) attainment strategy analysis. Environmental Modelling & Software, 91, 13–27. https://doi.org/10.1016/j.envsoft.2017.01.008
Markakis, K., Im, U., Unal, A., Melas, D., Yenigun, O., & Incecik, S. (2012). Compilation of a GIS based high spatially and temporally resolved emission inventory for the greater Istanbul area. Atmospheric Pollution Research, 3(1), 112–125. https://doi.org/10.5094/APR.2012.011
Maruo, Y. Y. (2019). Air pollution monitoring network of PM2.5, NO2 and radiation of 137Cs. In Chemical, gas, and biosensors for internet of things and related applications (Issue 2). Elsevier Inc. https://doi.org/10.1016/B978-0-12-815409-0.00022-X
Mazzeo, N., & Venegas, L. (2010a). Development and application of a methodology for designing a multi-objective and multi-pollutant air quality monitoring network for urban areas. In L. V. E.-A. Kumar (Ed.), Air quality (p. Ch. 2). IntechOpen. https://doi.org/10.5772/9752
Mazzeo, N., & Venegas, L. (2010b). Development and application of a methodology for designing a multi-objective and multi-pollutant air quality monitoring network for urban areas. In L. V. E.-A. Kumar (Ed.), Air quality (p. Ch. 2). IntechOpen. https://doi.org/10.5772/9752
Modak, P. M., & Lohani, B. N. (1985). Optimization of ambient air quality monitoring networks. Environmental Monitoring and Assessment, 5(1), 21–38. https://doi.org/10.1007/BF00396392
Nejadkoorki, F., Nicholson, K., & Hadad, K. (2011). The design of long-term air quality monitoring networks in urban areas using a spatiotemporal approach. Environmental Monitoring and Assessment, 172(1–4), 215–223. https://doi.org/10.1007/s10661-010-1328-4
Nguyen, T. N. T., Ha, D. V., Do, T. N. N., Nguyen, V. H., Ngo, X. T., Phan, V. H., Nguyen, N. D., & Bui, Q. H. (2019). Air pollution monitoring network using low-cost sensors, a case study in Hanoi. Vietnam. IOP Conference Series: Earth and Environmental Science, 266, 12017. https://doi.org/10.1088/1755-1315/266/1/012017
Ott, D. K., Kumar, N., & Peters, T. M. (2008). Passive sampling to capture spatial variability in PM10–2.5. Atmospheric Environment, 42(4), 746–756. https://doi.org/10.1016/j.atmosenv.2007.09.058
Sarigiannis, D. A., & Saisana, M. (2008). Multi-objective optimization of air quality monitoring. Environmental Monitoring and Assessment, 136(1–3), 87–99. https://doi.org/10.1007/s10661-007-9725-z
Schneider, P., Castell, N., Vogt, M., Dauge, F. R., Lahoz, W. A., & Bartonova, A. (2017). Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environment International, 106(December 2016), 234–247. https://doi.org/10.1016/j.envint.2017.05.005
Silva, C., & Quiroz, A. (2003). Optimization of the atmospheric pollution monitoring network at Santiago de Chile. Atmospheric Environment, 37(17), 2337–2345. https://doi.org/10.1016/S1352-2310(03)00152-3
Thai, N. T. K., Thao, L. T. H., Ha, T. D., Son, T. M., Bach, L. T., Tuong, L. N., & Ha, V. V. (2012). The process of monitoring and analyzing environmental quality (N. T. K. Thai (ed.); 1st ed.). Construction Publishing House.
VEA. (2018). Current status of environmental monitoring system in Vietnam. Portal for Environmental Monitoring - VEA. http://cem.gov.vn/mang-luoi-quan-trac-moi-truong/thuc-trang-he-thong-quan-trac-moi-truong-o-viet-nam. Accessed 25 Dec 2018.
Wang, J., Chen, M., Lü, G., Yue, S., Wen, Y., Sheng, Y., & Lu, M. (2021). A construction method of visual conceptual scenario for hydrological conceptual modeling. Environmental Modelling and Software, 145(September), 105190. https://doi.org/10.1016/j.envsoft.2021.105190
Watson, J. G., Chow, J. C., DuBois, D., Green, M., Frank, N., & Pitchford, M. (1997). Guidance for network design and optimum site exposure for PM2.5 and PM10. December, EPA-454/R-99–022.
WHO. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. In World Health Organization (Vol. 51, Issue 6).
Zimmerman, N. (2022). Tutorial: Guidelines for implementing low-cost sensor networks for aerosol monitoring. Journal of Aerosol Science, 159(August 2021), 105872. https://doi.org/10.1016/j.jaerosci.2021.105872