Building a better biofilm - Formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection
Tài liệu tham khảo
Flemming, 2010, The biofilm matrix, Nat Rev Microbiol, 8, 623, 10.1038/nrmicro2415
Høiby, 2010, Antibiotic resistance of bacterial biofilms, Int J Antimicrob Agents, 35, 322, 10.1016/j.ijantimicag.2009.12.011
Cutting, 2015, Cystic fibrosis genetics: from molecular understanding to clinical application, Nat Rev Genet, 16, 45, 10.1038/nrg3849
Heltshe, 2017, Cystic fibrosis: the dawn of a New therapeutic era, Am J Respir Crit Care Med, 195, 979, 10.1164/rccm.201606-1250PP
Aali, 2017, Iron chelation as novel treatment for lung inflammation in cystic fibrosis, Med Hypotheses, 104, 86, 10.1016/j.mehy.2017.05.029
Taylor-Robinson, 2018, Data resource profile: the UK cystic fibrosis registry, Int J Epidemiol, 47, 9, 10.1093/ije/dyx196
Magalhães, 2017, Insights into cystic fibrosis polymicrobial consortia: the role of species interactions in biofilm development, phenotype, and response to in-use antibiotics, Front Microbiol, 7, 10.3389/fmicb.2016.02146
Surette, 2014, The cystic fibrosis lung microbiome, Ann. Am. Thorac. Soc., 11, S61, 10.1513/AnnalsATS.201306-159MG
Sanders, 2016, Background and epidemiology, Pediatr Clin, 63, 567
Kidd, 2015, Pseudomonas aeruginosa genotypes acquired by children with cystic fibrosis by age 5-years, J Cyst Fibros, 14, 361, 10.1016/j.jcf.2014.12.007
Smith, 2017, Current and future therapies for Pseudomonas aeruginosa infection in patients with cystic fibrosis, FEMS Microbiol Lett, 364, 10.1093/femsle/fnx121
Nixon, 2001, Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis, J Pediatr, 138, 699, 10.1067/mpd.2001.112897
Konstan, 2007, Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis, J Pediatr, 151, 134, 10.1016/j.jpeds.2007.03.006
Lund-Palau, 2016, Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches, Expet Rev Respir Med, 10, 685, 10.1080/17476348.2016.1177460
Broder, 2017, LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa, Nat. Microbiol., 2, 16184, 10.1038/nmicrobiol.2016.184
Bjarnsholt, 2009, Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients, Pediatr Pulmonol, 44, 547, 10.1002/ppul.21011
Smith, 2003, Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration, Chest, 123, 1495, 10.1378/chest.123.5.1495
Hurley, 2012, Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis, J Cyst Fibros, 11, 288, 10.1016/j.jcf.2012.02.006
Müsken, 2017, Towards individualized diagnostics of biofilm-associated infections: a case study, npj Biofilms Microbiomes, 3, 22, 10.1038/s41522-017-0030-5
Sriramulu, 2005, Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung, J Med Microbiol, 54, 667, 10.1099/jmm.0.45969-0
Fung, 2010, Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum, J Med Microbiol, 59, 1089, 10.1099/jmm.0.019984-0
Palmer, 2007, Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum, J Bacteriol, 189, 10.1128/JB.01138-07
Turner, 2015, Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum, Proc. Natl. Acad. Sci. U.S.A, 112, 4110, 10.1073/pnas.1419677112
Sternberg, 2014, Methods for dynamic investigations of surface-attached in vitro bacterial and fungal biofilms, Methods Mol Biol, 1147, 3, 10.1007/978-1-4939-0467-9_1
Davidson, 2001, Mouse models of cystic fibrosis, Trends Genet, 17, S29, 10.1016/S0168-9525(01)02452-0
Cornforth, 2018, Pseudomonas aeruginosa transcriptome during human infection, Proc. Natl. Acad. Sci. U.S.A, 115, E5125, 10.1073/pnas.1717525115
Roberts, 2015, The limitations of in vitro experimentation in understanding biofilms and chronic infection, J Mol Biol, 427, 3646, 10.1016/j.jmb.2015.09.002
Kragh, 2019, Into the well—a close look at the complex structures of a microtiter biofilm and the crystal violet assay, Biofilms, 1
Henderson, 2014, Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure, J Clin Invest, 124, 3047, 10.1172/JCI73469
Baltimore, 1989, Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration, Am Rev Respir Dis, 140, 1650, 10.1164/ajrccm/140.6.1650
Bayes, 2016, A murine model of early Pseudomonas aeruginosa lung disease with transition to chronic infection, Sci Rep, 6, 35838, 10.1038/srep35838
Benahmed, 2014, NMR HRMAS spectroscopy of lung biopsy samples: comparison study between human, pig, rat, and mouse metabolomics, Magn Reson Med, 71, 35, 10.1002/mrm.24658
Harrison, 2016, An ex vivo lung model to study bronchioles infected with Pseudomonas aeruginosa biofilms, Microbiology, 162, 1755, 10.1099/mic.0.000352
Harrison, 2014, Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa, Infect Immun, 82, 3312, 10.1128/IAI.01554-14
Meurens, 2012, The pig: a model for human infectious diseases, Trends Microbiol, 20, 50, 10.1016/j.tim.2011.11.002
Hassan, 2020, Predicting antibiotic-associated virulence of Pseudomonas aeruginosa using an ex-vivo lung biofilm model, BioRxiv
Darch, 2015, Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection, Sci Rep, 5, 7649, 10.1038/srep07649
Liberati, 2006, An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants, Proc Natl Acad Sci Unit States Am, 103, 2833, 10.1073/pnas.0511100103
Liberati
Parkins, 2001, Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation, Mol Microbiol, 40, 1215, 10.1046/j.1365-2958.2001.02469.x
Colvin, 2011, The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa, PLoS Pathog, 7, 10.1371/journal.ppat.1001264
Moskowitz, 2004, Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis, J Clin Microbiol, 42, 1915, 10.1128/JCM.42.5.1915-1922.2004
Jiricny, 2010, Fitness correlates with the extent of cheating in a bacterium, J Evol Biol, 23, 738
Dumas, 2013, Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments, Proc. R. Soc. B Biol. Sci., 280
Winson, 1998, Construction and analysis of luxCDABE -based plasmid sensors for investigating N -acyl homoserine lactone-mediated quorum sensing, FEMS Microbiol Lett, 163, 185, 10.1111/j.1574-6968.1998.tb13044.x
Ghafoor, 2011, Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture, Appl Environ Microbiol, 77, 5238, 10.1128/AEM.00637-11
R Core Team, 2018
Fox, 2011
Hothorn, 2008, Simultaneous inference in general parametric models, Biom J, 50, 346, 10.1002/bimj.200810425
Lê, 2008, FactoMineR: an R package for multivariate analysis, J Stat Software, 25, 1
Davies, 2017, Visualizing antimicrobials in bacterial biofilms: three-dimensional biochemical imaging using TOF-SIMS, mSphere, 2, e00211, 10.1128/mSphere.00211-17
Harrison, 2017, Optimised chronic infection models demonstrate that siderophore ‘cheating’ in Pseudomonas aeruginosa is context specific, ISME J, 11, 2492, 10.1038/ismej.2017.103
Palmer, 2005, Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology, J Bacteriol, 187, 5267, 10.1128/JB.187.15.5267-5277.2005
Flynn, 2016, Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease, PLoS Pathog, 12, 10.1371/journal.ppat.1005846
Parkins, 2001, Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation, Mol Microbiol, 40, 1215, 10.1046/j.1365-2958.2001.02469.x
Jimenez, 2012, The multiple signaling systems regulating virulence in Pseudomonas aeruginosa, Microbiol Mol Biol Rev, 76, 46, 10.1128/MMBR.05007-11
Marmont, 2017, PelA and PelB proteins form a modification and secretion complex essential for Pel polysaccharide-dependent biofilm formation in Pseudomonas aeruginosa, J Biol Chem, 292, 19411, 10.1074/jbc.M117.812842
Hochstim, 2010, Biofilm detection with hematoxylin-eosin staining, Arch Otolaryngol - Head Neck Surg, 136, 453, 10.1001/archoto.2010.62
Tóth, 2011, Biofilm detection in chronic rhinosinusitis by combined application of hematoxylin-eosin and gram staining, Eur Arch Oto-Rhino-Laryngol, 268, 1455, 10.1007/s00405-011-1623-x
Hong, 2014, Hematoxylin and eosin staining for detecting biofilms: practical and cost-effective methods for predicting worse outcomes after endoscopic sinus surgery, Clin. Exp. Otorhinolaryngol., 7, 193, 10.3342/ceo.2014.7.3.193
Becerra, 2016, An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue, BMC Res Notes, 9, 216, 10.1186/s13104-016-1902-0
Hengzhuang, 2016, OligoG CF-5/20 disruption of mucoid Pseudomonas aeruginosa biofilm in a murine lung infection model, Antimicrob Agents Chemother, 60, 2620, 10.1128/AAC.01721-15
Høiby, 2017, Diagnosis of biofilm infections in cystic fibrosis patients, APMIS, 125, 339, 10.1111/apm.12689
Rubin, 2017, Frequency and costs of pulmonary exacerbations in patients with cystic fibrosis in the United States, Curr Med Res Opin, 33, 667, 10.1080/03007995.2016.1277196
Flynn, 2017, Genome-wide survey of Pseudomonas aeruginosa PA14 reveals a role for the glyoxylate pathway and extracellular proteases in the utilization of mucin, Infect Immun, 85, 10.1128/IAI.00182-17