Building a better biofilm - Formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection

Biofilm - Tập 2 - Trang 100024 - 2020
Niamh E. Harrington1, Esther Sweeney1, Freya Harrison1
1School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry CV4 7AL, United Kingdom

Tài liệu tham khảo

Flemming, 2010, The biofilm matrix, Nat Rev Microbiol, 8, 623, 10.1038/nrmicro2415 Høiby, 2010, Antibiotic resistance of bacterial biofilms, Int J Antimicrob Agents, 35, 322, 10.1016/j.ijantimicag.2009.12.011 Cutting, 2015, Cystic fibrosis genetics: from molecular understanding to clinical application, Nat Rev Genet, 16, 45, 10.1038/nrg3849 Heltshe, 2017, Cystic fibrosis: the dawn of a New therapeutic era, Am J Respir Crit Care Med, 195, 979, 10.1164/rccm.201606-1250PP Aali, 2017, Iron chelation as novel treatment for lung inflammation in cystic fibrosis, Med Hypotheses, 104, 86, 10.1016/j.mehy.2017.05.029 Taylor-Robinson, 2018, Data resource profile: the UK cystic fibrosis registry, Int J Epidemiol, 47, 9, 10.1093/ije/dyx196 Magalhães, 2017, Insights into cystic fibrosis polymicrobial consortia: the role of species interactions in biofilm development, phenotype, and response to in-use antibiotics, Front Microbiol, 7, 10.3389/fmicb.2016.02146 Surette, 2014, The cystic fibrosis lung microbiome, Ann. Am. Thorac. Soc., 11, S61, 10.1513/AnnalsATS.201306-159MG Sanders, 2016, Background and epidemiology, Pediatr Clin, 63, 567 Kidd, 2015, Pseudomonas aeruginosa genotypes acquired by children with cystic fibrosis by age 5-years, J Cyst Fibros, 14, 361, 10.1016/j.jcf.2014.12.007 Smith, 2017, Current and future therapies for Pseudomonas aeruginosa infection in patients with cystic fibrosis, FEMS Microbiol Lett, 364, 10.1093/femsle/fnx121 Nixon, 2001, Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis, J Pediatr, 138, 699, 10.1067/mpd.2001.112897 Konstan, 2007, Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis, J Pediatr, 151, 134, 10.1016/j.jpeds.2007.03.006 Lund-Palau, 2016, Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches, Expet Rev Respir Med, 10, 685, 10.1080/17476348.2016.1177460 Broder, 2017, LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa, Nat. Microbiol., 2, 16184, 10.1038/nmicrobiol.2016.184 Bjarnsholt, 2009, Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients, Pediatr Pulmonol, 44, 547, 10.1002/ppul.21011 Smith, 2003, Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration, Chest, 123, 1495, 10.1378/chest.123.5.1495 Hurley, 2012, Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis, J Cyst Fibros, 11, 288, 10.1016/j.jcf.2012.02.006 Müsken, 2017, Towards individualized diagnostics of biofilm-associated infections: a case study, npj Biofilms Microbiomes, 3, 22, 10.1038/s41522-017-0030-5 Sriramulu, 2005, Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung, J Med Microbiol, 54, 667, 10.1099/jmm.0.45969-0 Fung, 2010, Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum, J Med Microbiol, 59, 1089, 10.1099/jmm.0.019984-0 Palmer, 2007, Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum, J Bacteriol, 189, 10.1128/JB.01138-07 Turner, 2015, Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum, Proc. Natl. Acad. Sci. U.S.A, 112, 4110, 10.1073/pnas.1419677112 Sternberg, 2014, Methods for dynamic investigations of surface-attached in vitro bacterial and fungal biofilms, Methods Mol Biol, 1147, 3, 10.1007/978-1-4939-0467-9_1 Davidson, 2001, Mouse models of cystic fibrosis, Trends Genet, 17, S29, 10.1016/S0168-9525(01)02452-0 Cornforth, 2018, Pseudomonas aeruginosa transcriptome during human infection, Proc. Natl. Acad. Sci. U.S.A, 115, E5125, 10.1073/pnas.1717525115 Roberts, 2015, The limitations of in vitro experimentation in understanding biofilms and chronic infection, J Mol Biol, 427, 3646, 10.1016/j.jmb.2015.09.002 Kragh, 2019, Into the well—a close look at the complex structures of a microtiter biofilm and the crystal violet assay, Biofilms, 1 Henderson, 2014, Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure, J Clin Invest, 124, 3047, 10.1172/JCI73469 Baltimore, 1989, Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration, Am Rev Respir Dis, 140, 1650, 10.1164/ajrccm/140.6.1650 Bayes, 2016, A murine model of early Pseudomonas aeruginosa lung disease with transition to chronic infection, Sci Rep, 6, 35838, 10.1038/srep35838 Benahmed, 2014, NMR HRMAS spectroscopy of lung biopsy samples: comparison study between human, pig, rat, and mouse metabolomics, Magn Reson Med, 71, 35, 10.1002/mrm.24658 Harrison, 2016, An ex vivo lung model to study bronchioles infected with Pseudomonas aeruginosa biofilms, Microbiology, 162, 1755, 10.1099/mic.0.000352 Harrison, 2014, Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa, Infect Immun, 82, 3312, 10.1128/IAI.01554-14 Meurens, 2012, The pig: a model for human infectious diseases, Trends Microbiol, 20, 50, 10.1016/j.tim.2011.11.002 Hassan, 2020, Predicting antibiotic-associated virulence of Pseudomonas aeruginosa using an ex-vivo lung biofilm model, BioRxiv Darch, 2015, Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection, Sci Rep, 5, 7649, 10.1038/srep07649 Liberati, 2006, An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants, Proc Natl Acad Sci Unit States Am, 103, 2833, 10.1073/pnas.0511100103 Liberati Parkins, 2001, Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation, Mol Microbiol, 40, 1215, 10.1046/j.1365-2958.2001.02469.x Colvin, 2011, The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa, PLoS Pathog, 7, 10.1371/journal.ppat.1001264 Moskowitz, 2004, Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis, J Clin Microbiol, 42, 1915, 10.1128/JCM.42.5.1915-1922.2004 Jiricny, 2010, Fitness correlates with the extent of cheating in a bacterium, J Evol Biol, 23, 738 Dumas, 2013, Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments, Proc. R. Soc. B Biol. Sci., 280 Winson, 1998, Construction and analysis of luxCDABE -based plasmid sensors for investigating N -acyl homoserine lactone-mediated quorum sensing, FEMS Microbiol Lett, 163, 185, 10.1111/j.1574-6968.1998.tb13044.x Ghafoor, 2011, Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture, Appl Environ Microbiol, 77, 5238, 10.1128/AEM.00637-11 R Core Team, 2018 Fox, 2011 Hothorn, 2008, Simultaneous inference in general parametric models, Biom J, 50, 346, 10.1002/bimj.200810425 Lê, 2008, FactoMineR: an R package for multivariate analysis, J Stat Software, 25, 1 Davies, 2017, Visualizing antimicrobials in bacterial biofilms: three-dimensional biochemical imaging using TOF-SIMS, mSphere, 2, e00211, 10.1128/mSphere.00211-17 Harrison, 2017, Optimised chronic infection models demonstrate that siderophore ‘cheating’ in Pseudomonas aeruginosa is context specific, ISME J, 11, 2492, 10.1038/ismej.2017.103 Palmer, 2005, Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology, J Bacteriol, 187, 5267, 10.1128/JB.187.15.5267-5277.2005 Flynn, 2016, Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease, PLoS Pathog, 12, 10.1371/journal.ppat.1005846 Parkins, 2001, Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation, Mol Microbiol, 40, 1215, 10.1046/j.1365-2958.2001.02469.x Jimenez, 2012, The multiple signaling systems regulating virulence in Pseudomonas aeruginosa, Microbiol Mol Biol Rev, 76, 46, 10.1128/MMBR.05007-11 Marmont, 2017, PelA and PelB proteins form a modification and secretion complex essential for Pel polysaccharide-dependent biofilm formation in Pseudomonas aeruginosa, J Biol Chem, 292, 19411, 10.1074/jbc.M117.812842 Hochstim, 2010, Biofilm detection with hematoxylin-eosin staining, Arch Otolaryngol - Head Neck Surg, 136, 453, 10.1001/archoto.2010.62 Tóth, 2011, Biofilm detection in chronic rhinosinusitis by combined application of hematoxylin-eosin and gram staining, Eur Arch Oto-Rhino-Laryngol, 268, 1455, 10.1007/s00405-011-1623-x Hong, 2014, Hematoxylin and eosin staining for detecting biofilms: practical and cost-effective methods for predicting worse outcomes after endoscopic sinus surgery, Clin. Exp. Otorhinolaryngol., 7, 193, 10.3342/ceo.2014.7.3.193 Becerra, 2016, An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue, BMC Res Notes, 9, 216, 10.1186/s13104-016-1902-0 Hengzhuang, 2016, OligoG CF-5/20 disruption of mucoid Pseudomonas aeruginosa biofilm in a murine lung infection model, Antimicrob Agents Chemother, 60, 2620, 10.1128/AAC.01721-15 Høiby, 2017, Diagnosis of biofilm infections in cystic fibrosis patients, APMIS, 125, 339, 10.1111/apm.12689 Rubin, 2017, Frequency and costs of pulmonary exacerbations in patients with cystic fibrosis in the United States, Curr Med Res Opin, 33, 667, 10.1080/03007995.2016.1277196 Flynn, 2017, Genome-wide survey of Pseudomonas aeruginosa PA14 reveals a role for the glyoxylate pathway and extracellular proteases in the utilization of mucin, Infect Immun, 85, 10.1128/IAI.00182-17