Building Bayesian networks for legal evidence with narratives: a case study evaluation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Berger C, Aben D (2010a) Bewijs en overtuiging: Een helder zicht op valkuilen. Expert Recht 5(6):159–165
Berger C, Aben D (2010b) Bewijs en overtuiging: rationeel redeneren sinds aristoteles. Expert Recht 2:52–56
Berger C, Aben D (2010c) Bewijs en overtuiging: redeneren in de rechtszaal. Expert Recht 3:86–90
Bex F (2009) Analysing stories using schemes. In: Kaptein H, Prakken H, Verheij B (eds) Legal evidence and proof: statistics, stories, logic. Ashgate Publishing, Aldershot, pp 93–116
Bex F, van Koppen P, Prakken H, Verheij B (2010) A hybrid formal theory of arguments, stories and criminal evidence. Artif Intel Law 18:123–152
Conrad JG, Zeleznikow J (2013) The significance of evaluation in AI and law: a case study re-examining ICAIL proceedings. In: Proceedings of the fourteenth international conference on artificial intelligence and law, ACM, pp 186–191
Crombag H, Israëls H (2008) Moord in Anjum. Te veel niet gestelde vragen (Murder in Anjum. Too many unasked questions). Boom Juridische uitgevers, Den Haag
Dawid A (2009) Beware of the DAG. In: Journal of machine learning research: workshop and conference proceedings, vol 6, pp 59–86
Fenton N, Neil M (2000) The “jury observation fallacy” and the use of Bayesian networks to present probabilistic legal arguments. Math Today 36(6):180–187
Fenton N, Neil M (2012) On limiting the use of Bayes in presenting forensic evidence. http://www.eecs.qmul.ac.uk/~norman/papers/likelihood_ratio.pdf
Fenton N, Neil M, Lagnado D (2011) Modelling mutually exclusive causes in Bayesian networks. http://www.eecs.qmul.ac.uk/~norman/papers/mutual_IEEE_format_version.pdf
Fenton N, Neil M, Lagnado D (2013) A general structure for legal arguments using Bayesian networks. Cognit Sci 37:61–102
van Gosliga S, van de Voorde I (2008) Hypothesis management framework: a flexible design pattern for belief networks in decision support systems. In: 6th Bayesian modelling applications workshop at UAI 2008, Helsinki, Finland
Handfield T (2012) A philosophical guide to chance: physical probability. Cambridge University Press, Cambridge
Hepler A, Dawid A, Leucari V (2004) Object-oriented graphical representations of complex patterns of evidence. Law Probab Risk 6:275–293
Kaptein H, Prakken H, Verheij B (eds) (2009) Legal evidence and proof: statistics, stories, logic. Ashgate Publishing Company, Aldershot
Keppens J (2011) On extracting arguments from Bayesian network representations of evidential reasoning. In: Ashley K, van Engers T (eds) The 13th international conference on artificial intelligence and law. ACM, New York, pp 141–150
Keppens J, Schafer B (2006) Knowledge based crime scenario modelling. Expert Syst Appl 30(2):203–222
Lagnado D, Fenton N, Neil M (2013) Legal idioms: a framework for evidential reasoning. Argum Comput 4(1):46–63
Laskey K, Mahoney S (1997) Network fragments: representing knowledge for constructing probabilistic models. In: Proceedings of the thirteenth conference on uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 334–341
Pennington N, Hastie R (1992) Explaining the evidence: tests of the story model for juror decision making. J Person Soc Psychol 62(2):189–206
Pennington N, Hastie R (1993) The story model for juror decision making. In: Hastie R (eds) Inside the juror: the psychology of juror decision making. Cambridge University Press, Cambridge, pp 192–221
Poot CD, Bokhorst R, van Koppen P, Mulder E (2004) Recherche portret: over dilemma’s in de opsporing. Kluwer, Alphen aan den Rijn
Prakken H (2010) An abstract framework for argumentation with structured arguments. Argum Comput 1:93–124
Renooij S (2001) Probability elicitation for belief networks: issues to consider. Knowl Eng Rev 16(3):255–269
Rumelhart D (1975) Notes on a schema for stories. In: Bobrow D, Collins A (eds) Representation and understanding: studies in cognitive science. Academic Press, New York
Schank R, Abelson R (1977) Scripts, plans, goals and understanding, an inquiry into human knowledge structures. Lawrence Erlbaum, Hillsdale
Sileno G, Boer A, van Engers T (2012) Analysis of legal narratives: a conceptual framework. In: Legal knowledge and information systems: JURIX 2012: the 25th annual conference. IOS Press, Amsterdam, pp 143–146
Taroni F, Aitken C, Garbolino P, Biedermann A (2006) Bayesian networks and probabilistic inference in forensic science. Wiley, Chichester
Timmer S, Meyer JJC, Prakken H, Renooij S, Verheij B (2013) Inference and attack in Bayesian networks. In: Hindriks K, de Weerdt M, van Riemsdijk B, Warnier M (eds) Proceedings of the 25th Benelux conference on artificial intelligence, pp 199–206
Vlek C, Prakken H, Renooij S, Verheij B (2013a) Modeling crime scenarios in a Bayesian network. In: Proceedings of the 14th international conference on artificial intelligence and law. ACM Press, New York, pp 150–159
Vlek C, Prakken H, Renooij S, Verheij B (2013b) Representing and evaluating legal narratives with subscenarios in a Bayesian network. In: Finlayson M, Fisseni B, Löwe B, Meister J (eds) 2013 workshop on computational models of narrative. Schloss Dagstuhl, Saarbrücken/Wadern, Germany, pp 315–332. doi: 10.4230/OASIcs.CMN.2013.i
Vlek C, Prakken H, Renooij S, Verheij B (2013c) Unfolding crime scenarios with variations: a method for building Bayesian networks for legal narratives. In: Ashley K (ed) Legal knowledge and information systems: JURIX 2013: the twenty-sixth annual conference. IOS Press, pp 145–154
Wagenaar W, van Koppen P, Crombag H (1993) Anchored narratives: the psychology of criminal evidence. Harvester Wheatsheaf, Hemel Hempstead
