Budget constraint and vaccine dosing: a mathematical modelling exercise

Cost Effectiveness and Resource Allocation - Tập 12 - Trang 1-9 - 2014
Baudouin A Standaert1,2, Desmond Curran1, Maarten J Postma2
1Health Economics Department, GlaxoSmithKline Vaccines, Wavre, Belgium
2Unit of PharmacoEpidemiology & PharmacoEconomics (PE2), Department of Pharmacy, University of Groningen, Groningen, The Netherlands

Tóm tắt

Increasing the number of vaccine doses may potentially improve overall efficacy. Decision-makers need information about choosing the most efficient dose schedule to maximise the total health gain of a population when operating under a constrained budget. The objective of this study is to identify the most efficient vaccine dosing schedule within a fixed vaccination budget from a healthcare payer perspective. An optimisation model is developed in which maximizing the disease reduction is the functional objective and the constraint is the vaccination budget. The model allows variation in vaccination dosing numbers, in cost difference per dose, in vaccine coverage rate, and in vaccine efficacy. We apply the model using the monovalent rotavirus vaccine as an example. With a fixed budget, a 2-dose schedule for vaccination against rotavirus infection with the monovalent vaccine results in a larger reduction in disease episodes than a 3-dose scheme with the same vaccine under most circumstances. A 3-dose schedule would only be better under certain conditions: a cost reduction of >26% per dose, combined with vaccine efficacy improvement of ≥5% and a target coverage rate of 75%. Substantial interaction is observed between cost reduction per dose, vaccine coverage rate, and increased vaccine efficacy. Sensitivity analysis shows that the conditions required for a 3-dose strategy to be better than a 2-dose strategy may seldom occur when the budget is fixed. The model does not consider vaccine herd effect, precise timing for additional doses, or the effect of natural immunity development. Under budget constraint, optimisation modelling is a helpful tool for a decision-maker selecting the most efficient vaccination dosing schedule. The low dosing scheme could be the optimal option to consider under the many scenarios tested. The model can be applied under many different circumstances of changing dosing schemes with single or multiple vaccines.

Tài liệu tham khảo

Tate JE, Patel MM, Cortese MM, Lopman BA, Gentsch JR, Fleming J, Steele AD, Parashar UD: Remaining issues and challenges for rotavirus vaccine in preventing global childhood diarrheal morbidity and mortality. Expert Rev Vaccines 2012, 11: 211–220. 10.1586/erv.11.184 Munos MK, Walker CL, Black RE: The effect of rotavirus vaccine on diarrhoea mortality. Int J Epidemiol 2010,39(Suppl 1):i56-i62. Cherian T, Wang S, Mantel C: Rotavirus vaccines in developing countries: the potential impact, implementation challenges, and remaining questions. Vaccine 2012,30(Suppl 1):A3-A6. O'Ryan M, Lucero Y, Linhares AC: Rotarix®: vaccine performance 6 years postlicensure. Expert Rev Vaccines 2011, 10: 1645–1659. 10.1586/erv.11.152 Vesikari T: Rotavirus vaccination: a concise review. Clin Microbiol Infect 2012,18(Suppl 5):57–63. World Health Organization: Meeting of the immunization Strategic Advisory Group of Experts, April 2009–conclusions and recommendations. Wkly Epidemiol Rec 2009, 84: 220–236. Armah GE, Breiman RF, Tapia MD, Dallas MJ, Neuzil KM, Binka FN, Sow SO, Ojwando J, Ciarlet M, Steele AD: Immunogenicity of the pentavalent rotavirus vaccine in African infants. Vaccine 2012,30(Suppl 1):A86-A93. Cunliffe NA, Witte D, Ngwira BM, Todd S, Bostock NJ, Turner AM, Chimpeni P, Victor JC, Steele AD, Bouckenooghe A, et al.: Efficacy of human rotavirus vaccine against severe gastroenteritis in Malawian children in the first two years of life: a randomized, double-blind, placebo controlled trial. Vaccine 2012,30(Suppl 1):A36-A43. Steele AD, Neuzil KM, Cunliffe NA, Madhi SA, Bos P, Ngwira B, Witte D, Todd S, Louw C, Kirsten M, et al.: Human rotavirus vaccine Rotarix provides protection against diverse circulating rotavirus strains in African infants: a randomized controlled trial. BMC Infect Dis 2012, 12: 213. 10.1186/1471-2334-12-213 Lopman BA, Pitzer VE, Sarkar R, Gladstone B, Patel M, Glasser J, Gambhir M, Atchison C, Grenfell BT, Edmunds WJ, et al.: Understanding reduced rotavirus vaccine efficacy in low socio-economic settings. PLoS One 2012, 7: e41720. 10.1371/journal.pone.0041720 Lopman BA, Payne DC, Tate JE, Patel MM, Cortese MM, Parashar UD: Post-licensure experience with rotavirus vaccination in high and middle income countries; 2006 to 2011. Curr Opin Virol 2012, 2: 434–442. 10.1016/j.coviro.2012.05.002 Santosham M: Rotavirus vaccine–a powerful tool to combat deaths from diarrhea. N Engl J Med 2010, 362: 358–360. 10.1056/NEJMe0912141 Rotavirus Vaccine Developed in India Demonstrates Strong Efficacy [http://www.defeatdd.org/node/1107] Zaman K, Dang DA, Victor JC, Shin S, Yunus M, Dallas MJ, Podder G, Vu DT, Le TP, Luby SP, et al.: Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial. Lancet 2010, 376: 615–623. 10.1016/S0140-6736(10)60755-6 Madhi SA, Kirsten M, Louw C, Bos P, Aspinall S, Bouckenooghe A, Neuzil KM, Steele AD: Efficacy and immunogenicity of two or three dose rotavirus-vaccine regimen in South African children over two consecutive rotavirus-seasons: a randomized, double-blind, placebo-controlled trial. Vaccine 2012,30(Suppl 1):A44-A51. Lee BY, Assi TM, Rookkapan K, Wateska AR, Rajgopal J, Sornsrivichai V, Chen SI, Brown ST, Welling J, Norman BA, et al.: Maintaining vaccine delivery following the introduction of the rotavirus and pneumococcal vaccines in Thailand. PLoS One 2011, 6: e24673. 10.1371/journal.pone.0024673 Lee BY, Cakouros BE, Assi TM, Connor DL, Welling J, Kone S, Djibo A, Wateska AR, Pierre L, Brown ST: The impact of making vaccines thermostable in Niger's vaccine supply chain. Vaccine 2012, 30: 5637–5643. 10.1016/j.vaccine.2012.06.087 Krishnarajah G, Davis EJ, Fan Y, Standaert BA, Buikema AR: Rotavirus vaccine series completion and adherence to vaccination schedules among infants in managed care in the United States. Vaccine 2012, 30: 3717–3722. 10.1016/j.vaccine.2011.12.077 Earnshaw SR, Dennett SL: Integer/linear mathematical programming models: a tool for allocating healthcare resources. Pharmacoeconomics 2003, 21: 839–851. 10.2165/00019053-200321120-00001 Demarteau N, Breuer T, Standaert B: Selecting a mix of prevention strategies against cervical cancer for maximum efficiency with an optimization program. Pharmacoeconomics 2012, 30: 337–353. 10.2165/11591560-000000000-00000 Madhi SA, Cunliffe NA, Steele D, Witte D, Kirsten M, Louw C, Ngwira B, Victor JC, Gillard PH, Cheuvart BB, et al.: Effect of human rotavirus vaccine on severe diarrhea in African infants. N Engl J Med 2010, 362: 289–298. 10.1056/NEJMoa0904797 Ciblak MA: Influenza vaccination in Turkey: prevalence of risk groups, current vaccination status, factors influencing vaccine uptake and steps taken to increase vaccination rate. Vaccine 2013, 31: 518–523. 10.1016/j.vaccine.2012.11.022 De Wals P, Petit G, Erickson LJ, Guay M, Tam T, Law B, Framarin A: Benefits and costs of immunization of children with pneumococcal conjugate vaccine in Canada. Vaccine 2003, 21: 3757–3764. 10.1016/S0264-410X(03)00361-X Laval B, Fascia P, Gocko X, Feuillet J, Lucht F: Determinants of vaccination coverage for children and teenagers. Med Mal Infect 2011, 41: 359–363. 10.1016/j.medmal.2011.04.002 Owino LO, Irimu G, Olenja J, Meme JS: Factors influencing immunisation coverage in Mathare Valley, Nairobi. East Afr Med J 2009, 86: 323–329. Global Health Observatory Data Repository [http://apps.who.int/gho/data/node.country] Robberstad B, Frostad CR, Akselsen PE, Kvaerner KJ, Berstad AK: Economic evaluation of second generation pneumococcal conjugate vaccines in Norway. Vaccine 2011, 29: 8564–8574. 10.1016/j.vaccine.2011.09.025 Gentile A: The need for an evidence-based decision-making process with regard to control of hepatitis A. J Viral Hepat 2008,15(Suppl 2):16–21. Standaert B, Gomez JA, Raes M, Debrus S, Velazquez FR, Postma MJ: Impact of rotavirus vaccination on hospitalisations in Belgium: comparing model predictions with observed data. PLoS One 2013, 8: e53864. 10.1371/journal.pone.0053864 Topachevskyi O, Standaert B, Van Bellinghen LA, Van Vlaenderen I: Can a Multi-Criteria Decision (MCD) optimisation model help decision makers in the optimal selection of vaccines when expanding their universal mass vaccination programme? The case of Poland [abstract]. Value Health 2013, 16: A615.