Buckling of quasi-perfect cylindrical shell under axial compression: A combined experimental and numerical investigation

International Journal of Solids and Structures - Tập 130 - Trang 232-247 - 2018
Bo Wang1, Shiyang Zhu1,2, Peng Hao1, Xiangju Bi1, Kaifan Du1, Bingquan Chen1, Xiangtao Ma1, Yuh J. Chao3
1State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116023, China
2Wuhan Second Ship Design and Research Institute, Wuhan 430060, China
3Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA

Tài liệu tham khảo

Arbelo, 2014, Numerical characterization of imperfection sensitive composite structures, Compos. Struct., 108, 295, 10.1016/j.compstruct.2013.09.041 Arbocz, 1992 Arbocz, 1979 Arbocz, 1977, Imperfection surveys on a 10-ft-diameter shell structure, AIAA J., 15, 949, 10.2514/3.7389 Batista, R.C., Croll, J.G.A., 1979. A Design Approach for Unstiffened Cylindrical Shells Under External Pressure. John Wiley Sons, Inc. 299–319. Bisagni, 2006, Post-buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque, Compos. Struct., 73, 138, 10.1016/j.compstruct.2005.11.055 Boni, 2012, Post-buckling behaviour of flat stiffened composite panels: experiments vs. analysis, Compos. Struct., 94, 3421, 10.1016/j.compstruct.2012.06.005 Castro, 2013, Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors, Thin-Walled Struct., 72, 76, 10.1016/j.tws.2013.06.016 Castro, 2014, Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells, Thin-Walled Struct., 74, 118, 10.1016/j.tws.2013.08.011 Correlated Solutions Inc., 2017. VIC-3D-Ver 5. www.correlatedsolutions.com. Creaform Inc., 2017. HandySCAN 3D EXAsacn. www.creaform3d.com. Croll, 1981, Explicit lower bounds for the buckling of axially loaded cylinders, Int. J. Mech. Sci., 23, 331, 10.1016/0020-7403(81)90063-1 Degenhardt, 2011, New robust design guideline for imperfection sensitive composite launcher structures, 46, 2010 Degenhardt, 2010, Investigations on imperfection sensitivity and deduction of improved knock-down factors for unstiffened CFRP cylindrical shells, Compos. Struct., 92, 1939, 10.1016/j.compstruct.2009.12.014 Deml, 1997, Direct evaluation of the “worst” imperfection shape in shell buckling, Comput. Methods Appl. Mech. Eng., 149, 201, 10.1016/S0045-7825(97)00055-8 Donnell, 1950, Effect of imperfections on buckling of thin cylinders and columns under axial compression, J. Appl. Mech. ASME, 17, 73, 10.1115/1.4010060 Elishakoff, 2012, Optimization and antioptimization of buckling load for composite cylindrical shells under uncertainties, AIAA J., 50, 1513, 10.2514/1.J051300 Esslinger, M., 1970. Hochgeschwindigkeitsaufnahmen vom Beulvorgang dünnwandiger. axialbelasteter Zylinder 3. Ghayoor, 2017, Use of curvilinear fibers for improved bending-induced buckling capacity of elliptical composite cylinders, Int. J. Solids Struct., 109, 112, 10.1016/j.ijsolstr.2017.01.012 Hao, 2016, Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach, Compos. Struct., 136, 405, 10.1016/j.compstruct.2015.10.022 Hao, 2012, Surrogate-based optimum design for stiffened shells with adaptive sampling, AIAA J., 50, 2389, 10.2514/1.J051522 Hao, 2014, Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method, Thin-Walled Struct., 82, 46, 10.1016/j.tws.2014.04.004 Hao, 2015, Hybrid framework for reliability-based design optimization of imperfect stiffened shells, AIAA J., 53, 1, 10.2514/1.J053816 Hao, 2013, Surrogate-based optimization of stiffened shells including load-carrying capacity and imperfection sensitivity, Thin-Walled Struct., 72, 164, 10.1016/j.tws.2013.06.004 Hao, 2017, A novel non-probabilistic reliability-based design optimization algorithm using enhanced chaos control method, Comput. Methods Appl. Mech. Eng., 318, 572, 10.1016/j.cma.2017.01.037 Hao, 2015, Influence of imperfection distributions for cylindrical stiffened shells with weld lands, Thin-Walled Struct., 93, 177, 10.1016/j.tws.2015.03.017 Hao, 2016, Efficient optimization of cylindrical stiffened shells with reinforced cutouts by curvilinear stiffeners, AIAA J., 54, 1, 10.2514/1.J054445 Harris, 1957, The stability of thin-walled unstiffened circular cylinders under axial compression including the effects of internal pressure, J. Aeronaut. Sci., 24, 587, 10.2514/8.3911 Haynie, 2010, Comparison of methods to predict lower bound buckling loads of cylinders under axial compression Hilburger, 2006, Shell buckling design criteria based on manufacturing imperfection signatures, AIAA J., 44, 654, 10.2514/1.5429 Hilburger, 2004, Effects of imperfections of the buckling response of composite shells, Thin-Walled Struct., 42, 369, 10.1016/j.tws.2003.09.001 Hühne, 2008, Robust design of composite cylindrical shells under axial compression – simulation and validation, Thin-Walled Struct., 46, 947, 10.1016/j.tws.2008.01.043 Hühne, 2005, A new approach for robust design of composite cylindrical shells under axial compression Hutchinson, 1965, Axial buckling of pressurized imperfect cylindrical shells, AIAA J., 3, 1461, 10.2514/3.3169 Hutchinson, 1971, The effect of a local axisymmetric imperfection on the buckling behaviour of a circular cylindrical shell under axial compression, 9, 48 Hutchinson, 2010, Knockdown factors for buckling of cylindrical and spherical shells subject to reduced biaxial membrane stress, Int. J. Solids Struct., 47, 1443, 10.1016/j.ijsolstr.2010.02.009 Johansson, 2001, New design rules for plated structures in Eurocode 3, J. Constr. Steel Res., 57, 279, 10.1016/S0143-974X(00)00020-1 Kepple, 2015, Stochastic analysis of imperfection sensitive unstiffened composite cylinders using realistic imperfection models, Compos. Struct., 126, 159, 10.1016/j.compstruct.2015.02.063 Khamlichi, 2004, Buckling of elastic cylindrical shells considering the effect of localized axisymmetric imperfections, Thin-Walled Struct., 42, 1035, 10.1016/j.tws.2004.03.008 Koiter, 1945 Kriegesmann, 2010, Probabilistic design of axially compressed composite cylinders with geometric and loading imperfections, Int. J. Struct. Stab. Dyn., 10, 623, 10.1142/S0219455410003658 Lanzi, 2004, A numerical and experimental investigation on composite stiffened panels into post-buckling, Thin-Walled Struct., 42, 1645, 10.1016/j.tws.2004.06.001 Limam, 1991, Buckling of thin-walled cylinders under axial compression and internal pressure, 359 Luo, 1993, Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision, Exp. Mech., 33, 123, 10.1007/BF02322488 Mathon, 2006, Experimental collapse of thin cylindrical shells submitted to internal pressure and pure bending, Thin-Walled Struct., 44, 39, 10.1016/j.tws.2005.09.006 Muggeridge, 1969, Buckling of axisymmetric imperfect circular cylindrical shells underaxial compression, AIAA J., 7, 2127, 10.2514/3.5568 Ning, 2015, Imperfection-insensitive axially loaded thin cylindrical shells, Int. J. Solids Struct., 62, 39, 10.1016/j.ijsolstr.2014.12.030 Ning, 2016, Bloch wave buckling analysis of axially loaded periodic cylindrical shells, Comput. Struct., 177, 114, 10.1016/j.compstruc.2016.09.006 Ning, 2017, Experiments on imperfection insensitive axially loaded cylindrical shells, Int. J. Solids Struct., 115, 73, 10.1016/j.ijsolstr.2017.02.028 Opoka, 2009, On refined analysis of bifurcation buckling for the axially compressed circular cylinder, Int. J. Solids Struct., 46, 3111, 10.1016/j.ijsolstr.2009.03.030 Orifici, 2013, Perturbation-based imperfection analysis for composite cylindrical shells buckling in compression, Compos. Struct., 106, 520, 10.1016/j.compstruct.2013.06.028 Rotter, 1990, Local collapse of axially compressed pressurized thin steel cylinders, J. Struct. Eng., 116, 1955, 10.1061/(ASCE)0733-9445(1990)116:7(1955) Schmidt, 2000, Stability of steel shell structures, J. Constr. Steel Res., 55, 159, 10.1016/S0143-974X(99)00084-X Silvestre, 2008, Buckling behaviour of elliptical cylindrical shells and tubes under compression, Int. J. Solids Struct., 45, 4427, 10.1016/j.ijsolstr.2008.03.019 Singer, 1995, The development of shell imperfection measurement techniques, Thin-Walled Struct., 23, 379, 10.1016/0263-8231(95)94361-V Sosa, 2006, Computation of lower-bound elastic buckling loads using general-purpose finite element codes, Comput. Struct., 84, 1934, 10.1016/j.compstruc.2006.08.016 Starnes, 2000, The effects of initial imperfections on the buckling of composite shells, Compos. Struct. Theory Pract., 529 Stein, 1964 Sutton, 1986, Application of an optimized digital correlation method to planar deformation analysis, Image Vis. Comput., 4, 143, 10.1016/0262-8856(86)90057-0 Tan, 2012, Thin-shell deployable reflectors with collapsible stiffeners: experiments and simulations, AIAA J., 50, 659, 10.2514/1.J051254 Thornburgh, 2011, Axial-weld land buckling in compression-loaded orthogrid cylinders, J. Spacecr. Rockets, 48, 199, 10.2514/1.49782 Vries, 2009 Wang, 2016, Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression, Thin-Walled Struct., 109, 13, 10.1016/j.tws.2016.09.008 Wang, 2013, Determination of realistic worst imperfection for cylindrical shells using surrogate model, Struct. Multidiscip. Optim., 48, 777, 10.1007/s00158-013-0922-9 Wang, 2016, Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells, Compos. Struct., 152, 807, 10.1016/j.compstruct.2016.05.096 Weingarten, V.I., Seide, P., Peterson, J.P., 1968. Buckling of Thin-Walled Circular Cylinders. NASA SP-8007. Wilckens, 2010, Cyclic buckling tests of pre-damaged cfrp stringer-stiffened panels, Int. J. Struct. Stab. Dyn., 10, 827, 10.1142/S0219455410003762 Wullschleger, 2002, Buckling of geometrically imperfect cylindrical shells – definition of a buckling load, Int. J. Nonlinear Mech., 37, 645, 10.1016/S0020-7462(01)00089-0