Bubbly structures in a cavitating slot orifice

Experimental Thermal and Fluid Science - Tập 53 - Trang 57-69 - 2014
Matjaž Perpar1, Erazem Polutnik1, Marko Pečar1, Iztok Žun1
1Laboratory for Fluid Dynamics and Thermodynamics, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia

Tài liệu tham khảo

Yan, 1990, Flow regime transitions due to cavitation in the flow through an orifice, Int. J. Multiphase Flow, 16, 1023, 10.1016/0301-9322(90)90105-R Sato, 2002, Unstable cavitation behavior in a circular–cylindrical orifice flow., JSME Int. J. Series B Fluids and Therm., 45, 638, 10.1299/jsmeb.45.638 Mishra, 2005, Cavitation in flow through a micro-orifice inside a silicon microchannel, Phys. Fluids, 17, 1 De Giorgi, 2013, Evaluating cavitation regimes in an internal orifice at different temperatures using frequency analysis and visualization, Int. J. Heat Fluid Flow, 39, 160, 10.1016/j.ijheatfluidflow.2012.11.002 K. Sato, S. Shimoyo, Detailed observations on a starting mechanism for shedding of cavitation cloud,in: Fifth International Symposium on Cavitation (cav2003), Osaka, Japan. Brennen, 2005 J.M. Michel, Introduction to cavitation and supercavitation, RTO AVT Lecture Series on “Supercavitating Flows”, von Kármán Institute, Belgium, RTO EN-010, 2001. Stanley, 2011, Periodic cavitation shedding in a cylindrical orifice, Exp. Fluids, 51, 1189, 10.1007/s00348-011-1138-7 Dular, 2012, Scale effect on unsteady cloud cavitation, Exp. Fluids, 53, 1233, 10.1007/s00348-012-1356-7 Aeschlimann, 2012, High speed visualizations of the cavitating vortices of 2D mixing layer, Eur. J. Mech. B-Fluid, 31, 171, 10.1016/j.euromechflu.2011.07.004 Mizuyama, 2010, Detection of cavitation with accelerometers mounted on piping outer surfaces, J. of Environ. Eng. (JSME), 5, 200, 10.1299/jee.5.200 Nagaya, 2012, Detection of cavitation with directional microphones placed outside piping, Nucl. Eng. Des., 249, 140, 10.1016/j.nucengdes.2011.08.045 Barouch, 2004, Measurements within cloud cavitation by means of X-ray attenuation device, Nucl. Instrum. Meth. B, 213, 503, 10.1016/S0168-583X(03)01611-2 Coutier-Delgosha, 2006, Internal structure and dynamics of sheet cavitation, Phys. Fluids, 18, 1 Bauer, 2012, Measurements of void fraction distribution in cavitating pipe flow using X-ray CT, Meas. Sci. Technol., 23, 1 Mastikhin, 2012, Magnetic resonance imaging of velocity fields, the void fraction and gas dynamics in a cavitating liquid, Exp. Fluids, 52, 95, 10.1007/s00348-011-1209-9 Li, 2008, Structures of supercavitating multiphase flows, Int. J. Therm. Sci., 47, 1263, 10.1016/j.ijthermalsci.2007.11.010 Stutz, 2000, Measurements within unsteady cavitation, Exp. Fluids, 29, 545, 10.1007/s003480000122 Barre, 2009, Experiments and modeling of cavitating flows in venturi: attached sheet cavitation, Eur. J. Mech. B-Fluid, 28, 444, 10.1016/j.euromechflu.2008.09.001 Henry, 2000, Visualization of internal flow in a cavitating slot orifice, Atomization Sprays, 10, 545, 10.1615/AtomizSpr.v10.i6.20 Sou, 2007, Effects of cavitation in a nozzle on liquid jet atomization, Int. J. Heat Mass Trans., 50, 3575, 10.1016/j.ijheatmasstransfer.2006.12.033 www.weinberger-service.com, June 2013. www.olympus-ims.com/en/light-source, June 2013. www.highspeedfilm.de/dedocool.html, June 2013. www.sambasensors.com, January 2013. Žun, 1995, Phase discrimination in void fraction measurements via genetic algorithms, Rev. Sci. Instrum., 66, 5055, 10.1063/1.1146130 Franc, 2004 I. Žun, Eighteen months progress report, PREVERO Meeting, June 2004, Grenoble. I. Žun, M. Perpar, Bubbly structures in cavitating flow, V: Proceedings of the Japan-US Seminar on Two-Phase Flow Dynamics, Volume 1 129–137, December 6–11, 2004, Nagahama, Shiga, Japan. Žun, 2005, The principles of complexity in bubbly flow, Multiph. Sci. and Technol., 17, 169, 10.1615/MultScienTechn.v17.i1-2.90