Brondsted order in a metric space and generalizations of Caristi theorem
Tóm tắt
Từ khóa
Tài liệu tham khảo
Handbook of Metric Fixed Point Theory, Ed. by W.A. Kirk and B. Sims (Springer Science & Business Media, N.Y., 2001).
S. Abian and A. B. Brown, “A Theorem on Partially Ordered Sets, with Applications to Fixed Point Theorems,” Can. J. Math. 13, 78 (1961).
R. E. Smithson, “Fixed Points of Order Preserving Multifunctions,” Proc. Amer. Math. Soc. 2, 304 (1971).
E. Bishop and R. R. Phelps, “The Support Functionals of a Convex Set”, in Convexity, ed. by V. L. Klee, Proc. Symp. Pure Math., VII (Amer. Math. Soc, Providence, RI, 1963), pp. 27–35.
J. Jachymski, “Some Consequences of Fundamental Ordering Principles in Metric Fixed Point Theory,” Ann. Univ. M. Curie-Sklodowska. Sec. A 51, 123 (1997).
J. Caristi, “Fixed Point Theorems for Mappings Satisfying Inwardness Conditions,” Trans. Amer. Math. Soc. 215, 241 (1976).
D. A. Podoprikhin and T. N. Fomenko, “On Coincidences of Families of Mappings on Ordered Sets,” Doklady Russ. Akad. Nauk, Matem. 471 (1), 16 (2016) [Doklady Math. 94 (3), 620 (2016)].
T. N. Fomenko and D. A. Podoprikhin, “Common Fixed Points and Coincidences of Mapping Families on Partially Ordered Sets,” Topol. and Its Appl. 221, 275 (2017).