Broadband linearization for 5G fronthaul transmission

Frontiers of Optoelectronics - Tập 11 - Trang 107-115 - 2018
Xiupu Zhang1
1iPhotonics Labs, Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada

Tóm tắt

5G is emerging, but the current fronthaul transmission technologies used for 3G and 4G may not be efficient and appropriate for 5G. It has been found that frequency division multiple access (FDMA) and time-division multiple access (TDMA) based radio over fiber (RoF) may be considered the most appropriate for 5G fronthaul transmission technology. Due to analog RoF transmission, broadband linearization is required. In this work, both electrical and optical broadband linearization techniques are reviewed.

Tài liệu tham khảo

Third generation partnership project (3GPP) releases 10–15, 2011–2017 Asai T. 5G radio access network and its requirements on mobile optical networks. In: Proceedings of International Conference on Optical Network Design and Modeling (ONDM). Pisa, Italy, 2015, 7–11 Larsson E, Edfors O, Tufvesson F, Marzetta T. Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 2014, 52(2): 74–80 Liu X, Zeng H, Chand N, Effenberger F. Efficient mobile fronthaul via DSP-based channel aggregation. Journal of Lightwave Technology, 2016, 34(6): 1556–1564 Liu X, Effenberger F. Emerging optical access network technologies for 5G wireless. Journal of Optical Communications and Networking, 2016, 8(12): B70–B79 Zeng H, Liu X, Megeed S, Chand N, Effenberger F. Real-time demonstration of CPRI compatible efficient mobile fronthaul using FPGA. Journal of Lightwave Technology, 2017, 35(6): 1241–1247 Kani J, Terada J, Suzuki K, Otaka A. Solutions for future mobile fronthaul and access network convergence. Journal of Lightwave Technology, 2017, 35(3): 527–534 Liu X, Zeng H, Chand N, Effenberger F. CPRI compatible efficient mobile fronthaul transmission via equalized TDMA achieving 256 Gb/s CPRI equivalent data rate in a single 10-GHz bandwidth IMDD channel. In: Proceedings of Optical Fiber Communications (OFC) Conference. Anaheim, CA, 2016, Paper W1H.3 Zhang X, Zhu R, Shen D, Liu T. Linearization technologies for broadband radio-over-fiber transmission systems. MDPI Photonics, 2014, 1(1): 455–472 Shen Y, Hraimel B, Zhang X, Cowan G, Wu K, Liu T. A novel analog broadband RF predistortion circuit to linearize electroabsorption modulator in multiband OFDM ultra-wideband radio over fiber systems. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3327–3335 Zhu R, Zhang X, Shen D, Liu T. Broadband analog predistortion circuit using zero bias detector diodes for radio over fiber systems. IEEE Photonics Technology Letters, 2013, 25(21): 2101–2104 Zhu R, Zhang X, Shen D, Zhang Y. Ultra broadband predistortion circuit for radio-over-fiber transmission systems. Journal of Lightwave Technology, 2016, 34(22): 5137–5145 Zhang X, Saha S, Zhu R, Liu T, Shen D. Analog pre-distortion circuit for radio over fiber transmission. IEEE Photonics Technology Letters, 2016, 28(22): 2541–2544 Wood J. Behavioral Modeling and Linearization of RF Power Amplifiers. Boston: Artech House, 2014 Tang W. Envelope-assisted RF digital predistortion for broadband radio-over-fiber transmission with RF amplifier. Dissertation for the Master Degree. Montreal: Concordia University, 2017 Bassam S, Helaoui M, Ghannouchi F. 2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(10): 2547–2553 Xie X. Combined linearization of both analog and digital predistortion for broadband radio over fiber transmission. Dissertation for the Master Degree. Montreal: Concordia University, 2017 Masella B, Hraimel B, Zhang X. Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach-Zehnder modulator. Journal of Lightwave Technology, 2009, 27(15): 3034–3041 Hraimel B, Zhang X. Characterization and compensation of AMAM and AM-PM distortion in mixed polarization radio over fiber systems. In: Proceedings of IEEE/MTT-S International Microwave Symposium Digest. Montreal, QC, 2012, 1–3 Hraimel B, Zhang X, Liu T, Xu T, Nie Q, Shen D. Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive X-cut Mach-Zehnder modulator. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(10): 3328–3338 Hraimel B, Zhang X, Jiang W, Wu K, Liu T, Xu T, Nie Q, Xu K. Experimental demonstration of mixed-polarization to linearize electro-absorption modulators in radio-over-fiber links. IEEE Photonics Technology Letters, 2011, 23(4): 230–232 Hraimel B, Zhang X. Performance improvement of radio-over fiber links using mixed-polarization electro-absorption modulator. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(12): 3239–3248 Hraimel B, Zhang X. Suppression of radio over fiber system nonlinearity using a semiconductor optical amplifier and mixed polarization. In: Proceedings of Optical Fiber Communication (OFC) Conference. Anaheim, CA, 2013, Paper JTh2A.59 Chen X, Li W, Yao J. Microwave photonic link with improved dynamic range using a polarization modulator. IEEE Photonics Technology Letters, 2013, 25(14): 1373–1376 Li W, Yao J. Dynamic range improvement of a microwave photonic link based on bi-directional use of a polarization modulator in a Sagnac loop. Optics Express, 2013, 21(13): 15692–15697 Zhu R, Shen D, Zhang X, Liu T. Analysis of dual wavelength linearization technique for radio-over-fiber systems with electroabsorption modulator. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(8): 2692–2702