Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture

IEEE Transactions on Neural Networks and Learning Systems - Tập 29 Số 1 - Trang 10-24 - 2018
C. L. Philip Chen, Zhulin Liu

Tóm tắt

Từ khóa


Tài liệu tham khảo

rao, 1972, Generalized inverse of a matrix and its applications, Proc 6th Berkeley Symp Math Statist Probab, 1, 601

ben-israel, 1974, Generalized Inverses Theory and Applications

10.1002/gamm.201310004

10.1023/A:1010933404324

10.1007/s10208-007-9011-z

10.1198/016214501753382273

leonides, 2012, Control and dynamic systems V18, Advances in Theory and Applications

10.1109/72.536316

10.1109/TNNLS.2016.2517096

markovsky, 2011, Low rank approximation, Algorithms Implementation Applications

rakotomamonjy, 2003, Variable selection using SVM-based criteria, J Mach Learn Res, 3, 1357

10.1109/3477.740166

10.1109/TC.1977.1674939

hou, 2015, Blind image quality assessment via deep learning, IEEE Trans Neural Netw Learn Syst, 26, 1275, 10.1109/TNNLS.2014.2336852

10.1109/TNNLS.2015.2435783

10.1016/0925-2312(94)90053-1

lecun, 1990, Handwritten digit recognition with a back-propagation network, Proc Neural Inf Process Syst (NIPS), 396

10.1109/72.471375

10.1109/72.80202

denker, 1989, Neural network recognizer for hand-written zip code digits, Advances in neural information processing systems, 323

10.1016/j.ins.2014.01.015

10.1109/CCA.2009.5281061

10.1137/120896219

10.1162/NECO_a_00158

10.1109/CVPR.2004.1315150

10.1109/MIS.2013.140

bishop, 2006, Pattern Recognition and Machine Learning

10.1145/1390156.1390294

10.1109/TNNLS.2015.2424995

chen, 2012, Marginalized denoising autoencoders for domain adaptation

serre, 2002, Matrices, Theory and Applications

10.1109/TNNLS.2015.2469673

10.1109/TFUZZ.2016.2639064

10.1109/TFUZZ.2015.2406889

10.1109/TCYB.2014.2322195

10.1109/TCYB.2015.2443857

10.1109/TKDE.2015.2499200

10.1016/S0893-6080(05)80131-5

10.1109/2.144401

goodfellow, 2016, Deep Learning

krizhevsky, 2012, ImageNet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems 25 (NIPS 2012), 1097

hinton, 2006, Reducing the dimensionality of data with neural networks, Science, 313, 504, 10.1126/science.1127647

10.1162/neco.2006.18.7.1527

10.1109/5.726791

salakhutdinov, 2009, Deep boltzmann machines, Proc AISTATS, 1, 3

10.1137/080716542

simonyan, 2014, Very Deep Convolutional Networks for Large-scale Image Recognition

10.1109/TIT.2007.909108

tibshirani, 1996, Regression shrinkage and selection via the lasso, J R Statist Soc B (Methodological), 58, 267, 10.1111/j.2517-6161.1996.tb02080.x

10.1561/2200000016

10.1109/TSP.2006.881199

xu, 2012, $L_{1/2}$ regularization: A thresholding representation theory and a fast solver, IEEE Trans Neural Netw Learn Syst, 23, 1013, 10.1109/TNNLS.2012.2197412

10.1080/00401706.2000.10485983

10.1016/S0042-6989(97)00169-7

10.1109/TNNLS.2015.2396937