Brief at the Risk of Being Misunderstood: Consolidating Population- and Individual-Level Tendencies

Computational Brain & Behavior - Tập 4 Số 3 - Trang 305-317 - 2021
Thomas Brochhagen1
1Department of Translation and Language Sciences, Pompeu Fabra University, Barcelona, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson, J.R. (1990). The Adaptive Character of Thought. Psychology Press.

Benz, A., & van Rooij, R. (2007). Optimal assertions, and what they implicate. A uniform game theoretic approach. Topoi, 26(1), 63–78. https://doi.org/10.1007/s11245-006-9007-3.

Bergen, L., Goodman, N.D., & Levy, R. (2012). That’s what she (could have) said: How alternative utterances affect language use. In Proceedings of 34th Annual Meeting of the Cognitive Science Society.

Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv:1701.02434.

Blume, A., Kim, Y.-G., & Sobel, J. (1993). Evolutionary stability in games of communication. Games and Economic Behavior, 5(4), 547–575. https://doi.org/10.1006/game.1993.1031.

Brennan, S.E., & Clark, H.H. (1996). Conceptual pacts and lexical choice in conversation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(6), 1482–1493. https://doi.org/10.1037/0278-7393.22.6.1482.

Brochhagen, T. (2017). Signaling under uncertainty: Interpretative alignment without a common prior. The British Journal for the Philosophy of Science. https://doi.org/10.1093/bjps/axx058.

Brochhagen, T. (2018). Signaling under Uncertainty. PhD thesis, University of Amsterdam.

Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1). https://doi.org/10.18637/jss.v076.i01.

Chaabouni, R., Kharitonov, E., Dupoux, E., & Baroni, M. (2019). Anti-efficient encoding in emergent communication. In Advances in Neural Information Processing Systems, (Vol. 32 pp. 6293–6303): Curran Associates Inc.

Clark, H.H., & Wilkes-Gibbs, D. (1986). Referring as a collaborative process. Cognition, 22(1), 1–39. https://doi.org/10.1016/0010-0277(86)90010-7.

Dautriche, I. (2015). Weaving an Ambiguous Lexicon. PhD thesis, École Normale Supérieure.

Estes, W.K., & Maddox, W.T. (2005). Risks of drawing inferences about cognitive processes from model fits to individual versus average performance. Psychonomic Bulletin & Review, 12(3), 403–408. https://doi.org/10.3758/bf03193784.

Ferrer-i-Cancho, R., & Hernández-Fernández, A. (2013). The failure of the law of brevity in two new world primates. Statistical caveats. Glottotheory 4(1). https://doi.org/10.1524/glot.2013.0004.

Ferrer-i-Cancho, R., Hernández-Fernández, A., Lusseau, D., Agoramoorthy, G., Hsu, M.J., & Semple, S. (2013). Compression as a universal principle of animal behavior. Cognitive Science, 37 (8), 1565–1578. https://doi.org/10.1111/cogs.12061.

Frank, M.C., & Goodman, N.D. (2012). Predicting pragmatic reasoning in language games. Science, 336(6084), 998–998. https://doi.org/10.1126/science.1218633.

Franke, M., & Degen, J. (2016). Reasoning in reference games: Individual- vs. population-level probabilistic modeling. PLoS ONE, 11(5). https://doi.org/10.1371/journal.pone.0154854.

Franke, M., & Jäger, G. (2016). Probabilistic pragmatics, or why Bayes’ rule is probably important for pragmatics. Zeitschrift für Sprachwissenschaft, 35(1). https://doi.org/10.1515/zfs-2016-0002.

Gelman, A., & Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472. https://doi.org/10.1214/ss/1177011136.

Goodman, N.D., & Frank, M.C. (2016). Pragmatic language interpretation as probabilistic inference. Trends in Cognitive Sciences, 20(11), 818–829. https://doi.org/10.1016/j.tics.2016.08.005.

Goodman, N.D., & Stuhlmüller, A. (2013). Knowledge and implicature: Modeling language understanding as social cognition. Topics in Cognitive Science, 5, 173–184. https://doi.org/10.1111/tops.12007.

Grice, P. (1975). Logic and conversation. Syntax and Semantics, 3, 41–58.

Griffiths, T.L., Chater, N., Norris, D., & Pouget, A. (2012). How the Bayesians got their beliefs (and what those beliefs actually are): Comment on Bowers and Davis (2012). Psychological Bulletin, 138(3), 415–422. https://doi.org/10.1037/a0026884.

Hawkins, R.D., Goodman, N.D., Goldberg, A.E., & Griffiths, T.L. (2020). Generalizing meanings from partners to populations: Hierarchical inference supports convention formation on networks.

Horn, L.R. (1984). Toward a new taxonomy for pragmatic inference: Q-based and R-based implicature. In Schiffrin, D. (Ed.) Meaning, Form and Use in Context (pp. 11–42): Georgetown University Press.

Jones, M., & Love, B.C. (2011). Bayesian fundamentalism or enlightenment? on the explanatory status and theoretical contributions of bayesian models of cognition. Behavioral and Brain Sciences, 34(4), 169–188. https://doi.org/10.1017/s0140525x10003134.

Juba, B., Kalai, A.T., Khanna, S., & Sudan, M. (2011). Compression without a common prior: An information-theoretic justification for ambiguity in language. In Proceedings of the 2nd Symposium on Innovations in Computer Science.

Kanwal, J., Smith, K., Culbertson, J., & Kirby, S. (2017). Zipf’s law of abbreviation and the principle of least effort: Language users optimise a miniature lexicon for efficient communication. Cognition, 165, 45–52. https://doi.org/10.1016/j.cognition.2017.05.001.

Luce, D.R. (1959). Individual Choice Behavior: A Theoretical Analysis. Wiley.

Metzing, C., & Brennan, S.E. (2003). When conceptual pacts are broken: Partner-specific effects on the comprehension of referring expressions. Journal of Memory and Language, 49(2), 201–213. https://doi.org/10.1016/s0749-596x(03)00028-7.

O’Connor, C. (2015). Ambiguity is kinda good sometimes. Philosophy of Science, 82(1), 110–121. https://doi.org/10.1086/679180.

Parikh, P. (2000). Communication, meaning, and interpretation. Linguistics and Philosophy, 23 (2), 185–212.

Perfors, A., & Navarro, D.J. (2014). Language evolution can be shaped by the structure of the world. Cognitive Science, 38(4), 775–793. https://doi.org/10.1111/cogs.12102.

Piantadosi, S.T., Tily, H., & Gibson, E. (2011). Word lengths are optimized for efficient communication. Proceedings of the National Academy of Sciences, 108(9), 3526–3529. https://doi.org/10.1073/pnas.1012551108.

Piantadosi, S.T., Tily, H., & Gibson, E. (2012a). The communicative function of ambiguity in language. Cognition, 122(3), 280–291. https://doi.org/10.1016/j.cognition.2011.10.004.

Qing, C., & Franke, M. (2015). Variations on a Bayesian theme: Comparing Bayesian models of referential reasoning. In Bayesian Natural Language Semantics and Pragmatics. https://doi.org/10.1007/978-3-319-17064-0_9(pp. 201–220): Springer International Publishing.

Sigurd, B., Eeg-Olofsson, M., & van Weijer, J. (2004). Word length, sentence length and frequency - zipf revisited. Studia Linguistica, 58(1), 37–52. https://doi.org/10.1111/j.0039-3193.2004.00109.x.

Skyrms, B. (2010). Signals: Evolution, Learning, and Information. Oxford University Press.

Steels, L. (2011). Modeling the cultural evolution of language. Physics of Life Reviews, 8(4), 339–356.

Strauss, U., Grzybek, P., & Altmann, G. (2007). Word length and word frequency. In Contributions to the Science of Text and Language. https://doi.org/10.1007/978-1-4020-4068-9_13 (pp. 277–294). Netherlands: Springer.

Sutton, R.S., & Barto, A.G. (1998). Introduction to Reinforcement Learning. Cambridge: MIT Press.

Tamariz, M., & Kirby, S. (2016). The cultural evolution of language. Current Opinion in Psychology, 8, 37–43.

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432.

Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., & Gelman, A. (2019). loo: Efficient leave-one-out cross-validation and WAIC for bayesian models. URL https://mc-stan.org/loo. R package version 2.2.0.

Zipf, G. (1935). The Psycho-Biology of Language. Houghton Mifflin.