Brief at the Risk of Being Misunderstood: Consolidating Population- and Individual-Level Tendencies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, J.R. (1990). The Adaptive Character of Thought. Psychology Press.
Benz, A., & van Rooij, R. (2007). Optimal assertions, and what they implicate. A uniform game theoretic approach. Topoi, 26(1), 63–78. https://doi.org/10.1007/s11245-006-9007-3.
Bergen, L., Goodman, N.D., & Levy, R. (2012). That’s what she (could have) said: How alternative utterances affect language use. In Proceedings of 34th Annual Meeting of the Cognitive Science Society.
Blume, A., Kim, Y.-G., & Sobel, J. (1993). Evolutionary stability in games of communication. Games and Economic Behavior, 5(4), 547–575. https://doi.org/10.1006/game.1993.1031.
Brennan, S.E., & Clark, H.H. (1996). Conceptual pacts and lexical choice in conversation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(6), 1482–1493. https://doi.org/10.1037/0278-7393.22.6.1482.
Brochhagen, T. (2017). Signaling under uncertainty: Interpretative alignment without a common prior. The British Journal for the Philosophy of Science. https://doi.org/10.1093/bjps/axx058.
Brochhagen, T. (2018). Signaling under Uncertainty. PhD thesis, University of Amsterdam.
Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1). https://doi.org/10.18637/jss.v076.i01.
Chaabouni, R., Kharitonov, E., Dupoux, E., & Baroni, M. (2019). Anti-efficient encoding in emergent communication. In Advances in Neural Information Processing Systems, (Vol. 32 pp. 6293–6303): Curran Associates Inc.
Clark, H.H., & Wilkes-Gibbs, D. (1986). Referring as a collaborative process. Cognition, 22(1), 1–39. https://doi.org/10.1016/0010-0277(86)90010-7.
Dautriche, I. (2015). Weaving an Ambiguous Lexicon. PhD thesis, École Normale Supérieure.
Estes, W.K., & Maddox, W.T. (2005). Risks of drawing inferences about cognitive processes from model fits to individual versus average performance. Psychonomic Bulletin & Review, 12(3), 403–408. https://doi.org/10.3758/bf03193784.
Ferrer-i-Cancho, R., & Hernández-Fernández, A. (2013). The failure of the law of brevity in two new world primates. Statistical caveats. Glottotheory 4(1). https://doi.org/10.1524/glot.2013.0004.
Ferrer-i-Cancho, R., Hernández-Fernández, A., Lusseau, D., Agoramoorthy, G., Hsu, M.J., & Semple, S. (2013). Compression as a universal principle of animal behavior. Cognitive Science, 37 (8), 1565–1578. https://doi.org/10.1111/cogs.12061.
Frank, M.C., & Goodman, N.D. (2012). Predicting pragmatic reasoning in language games. Science, 336(6084), 998–998. https://doi.org/10.1126/science.1218633.
Franke, M., & Degen, J. (2016). Reasoning in reference games: Individual- vs. population-level probabilistic modeling. PLoS ONE, 11(5). https://doi.org/10.1371/journal.pone.0154854.
Franke, M., & Jäger, G. (2016). Probabilistic pragmatics, or why Bayes’ rule is probably important for pragmatics. Zeitschrift für Sprachwissenschaft, 35(1). https://doi.org/10.1515/zfs-2016-0002.
Gelman, A., & Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472. https://doi.org/10.1214/ss/1177011136.
Goodman, N.D., & Frank, M.C. (2016). Pragmatic language interpretation as probabilistic inference. Trends in Cognitive Sciences, 20(11), 818–829. https://doi.org/10.1016/j.tics.2016.08.005.
Goodman, N.D., & Stuhlmüller, A. (2013). Knowledge and implicature: Modeling language understanding as social cognition. Topics in Cognitive Science, 5, 173–184. https://doi.org/10.1111/tops.12007.
Grice, P. (1975). Logic and conversation. Syntax and Semantics, 3, 41–58.
Griffiths, T.L., Chater, N., Norris, D., & Pouget, A. (2012). How the Bayesians got their beliefs (and what those beliefs actually are): Comment on Bowers and Davis (2012). Psychological Bulletin, 138(3), 415–422. https://doi.org/10.1037/a0026884.
Hawkins, R.D., Goodman, N.D., Goldberg, A.E., & Griffiths, T.L. (2020). Generalizing meanings from partners to populations: Hierarchical inference supports convention formation on networks.
Horn, L.R. (1984). Toward a new taxonomy for pragmatic inference: Q-based and R-based implicature. In Schiffrin, D. (Ed.) Meaning, Form and Use in Context (pp. 11–42): Georgetown University Press.
Jones, M., & Love, B.C. (2011). Bayesian fundamentalism or enlightenment? on the explanatory status and theoretical contributions of bayesian models of cognition. Behavioral and Brain Sciences, 34(4), 169–188. https://doi.org/10.1017/s0140525x10003134.
Juba, B., Kalai, A.T., Khanna, S., & Sudan, M. (2011). Compression without a common prior: An information-theoretic justification for ambiguity in language. In Proceedings of the 2nd Symposium on Innovations in Computer Science.
Kanwal, J., Smith, K., Culbertson, J., & Kirby, S. (2017). Zipf’s law of abbreviation and the principle of least effort: Language users optimise a miniature lexicon for efficient communication. Cognition, 165, 45–52. https://doi.org/10.1016/j.cognition.2017.05.001.
Luce, D.R. (1959). Individual Choice Behavior: A Theoretical Analysis. Wiley.
Metzing, C., & Brennan, S.E. (2003). When conceptual pacts are broken: Partner-specific effects on the comprehension of referring expressions. Journal of Memory and Language, 49(2), 201–213. https://doi.org/10.1016/s0749-596x(03)00028-7.
O’Connor, C. (2015). Ambiguity is kinda good sometimes. Philosophy of Science, 82(1), 110–121. https://doi.org/10.1086/679180.
Parikh, P. (2000). Communication, meaning, and interpretation. Linguistics and Philosophy, 23 (2), 185–212.
Perfors, A., & Navarro, D.J. (2014). Language evolution can be shaped by the structure of the world. Cognitive Science, 38(4), 775–793. https://doi.org/10.1111/cogs.12102.
Piantadosi, S.T., Tily, H., & Gibson, E. (2011). Word lengths are optimized for efficient communication. Proceedings of the National Academy of Sciences, 108(9), 3526–3529. https://doi.org/10.1073/pnas.1012551108.
Piantadosi, S.T., Tily, H., & Gibson, E. (2012a). The communicative function of ambiguity in language. Cognition, 122(3), 280–291. https://doi.org/10.1016/j.cognition.2011.10.004.
Qing, C., & Franke, M. (2015). Variations on a Bayesian theme: Comparing Bayesian models of referential reasoning. In Bayesian Natural Language Semantics and Pragmatics. https://doi.org/10.1007/978-3-319-17064-0_9(pp. 201–220): Springer International Publishing.
Sigurd, B., Eeg-Olofsson, M., & van Weijer, J. (2004). Word length, sentence length and frequency - zipf revisited. Studia Linguistica, 58(1), 37–52. https://doi.org/10.1111/j.0039-3193.2004.00109.x.
Steels, L. (2011). Modeling the cultural evolution of language. Physics of Life Reviews, 8(4), 339–356.
Strauss, U., Grzybek, P., & Altmann, G. (2007). Word length and word frequency. In Contributions to the Science of Text and Language. https://doi.org/10.1007/978-1-4020-4068-9_13 (pp. 277–294). Netherlands: Springer.
Tamariz, M., & Kirby, S. (2016). The cultural evolution of language. Current Opinion in Psychology, 8, 37–43.
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432.
Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., & Gelman, A. (2019). loo: Efficient leave-one-out cross-validation and WAIC for bayesian models. URL https://mc-stan.org/loo. R package version 2.2.0.
Zipf, G. (1935). The Psycho-Biology of Language. Houghton Mifflin.