Bridging the N-terminal and middle domains in FliG of the flagellar rotor
Tài liệu tham khảo
Abraham, 2015, Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1–2, 19, 10.1016/j.softx.2015.06.001
Arpino, 2012, Crystal structure of enhanced green fluorescent protein to 1.35 Å resolution reveals alternative conformations for Glu222, PLoS One, 7, 10.1371/journal.pone.0047132
D, 2002
Baker, 2016, Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor, Nat. Struct. Mol. Biol., 23, 197, 10.1038/nsmb.3172
Beeby, 2016, Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold, Proc. Natl. Acad. Sci. U. S. A., 113, E1917, 10.1073/pnas.1518952113
Benkert, 2008, QMEAN: a comprehensive scoring function for model quality assessment, Proteins Struct. Funct. Genet., 71, 261, 10.1002/prot.21715
Brown, 2002, Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG, EMBO J., 21, 3225, 10.1093/emboj/cdf332
Bussi, 2007, Canonical sampling through velocity rescaling, J. Chem. Phys., 126
Carroll, 2020, The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching, Elife, 9, 10.7554/eLife.61446
Carugo, 1997, Protein-protein crystal-packing contacts, Protein Sci., 6, 2261, 10.1002/pro.5560061021
Chaban, 2015, The flagellum in bacterial pathogens: for motility and a whole lot more, Semin. Cell Dev. Biol., 46, 91, 10.1016/j.semcdb.2015.10.032
Chang, 2020, Molecular mechanism for rotational switching of the bacterial flagellar motor, Nat. Struct. Mol. Biol., 10.1038/s41594-020-0497-2
Chevance, 2008, Coordinating assembly of a bacterial macromolecular machine, Nat. Rev. Microbiol., 6, 455, 10.1038/nrmicro1887
Darden, 1993, Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089, 10.1063/1.464397
Dey, 2018, PDB-wide identification of biological assemblies from conserved quaternary structure geometry, Nat. Methods, 15, 67, 10.1038/nmeth.4510
Edgar, 2004, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792, 10.1093/nar/gkh340
Fiser, 2003, ModLoop: automated modeling of loops in protein structures, Bioinformatics, 19, 2500, 10.1093/bioinformatics/btg362
Francis, 1994, Isolation, characterization and structure of bacterial flagllar motors containing the switch complex, J. Mol. Biol., 235, 1261, 10.1006/jmbi.1994.1079
Gordon, 2005, H++: a server for estimating pKas and adding missing hydrogens to macromolecules, Nucleic Acids Res., 33, W368, 10.1093/nar/gki464
Hess, 1997, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463, 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Hollingsworth, 2018, Molecular dynamics simulation for all, Neuron, 99, 1129, 10.1016/j.neuron.2018.08.011
Huang, 2013, CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data, J. Comput. Chem., 34, 2135, 10.1002/jcc.23354
Huang, 2016, CHARMM36m: an improved force field for folded and intrinsically disordered proteins, Nat. Methods, 14, 71, 10.1038/nmeth.4067
Humphrey, 1996, Visual molecular dynamics, J. Mol. Graph., 14, 10.1016/0263-7855(96)00018-5
Johnson, 2020, Symmetry mismatch in the MS-ring of the bacterial flagellar rotor explains the structural coordination of secretion and rotation, Nat. Microbiol., 5, 966, 10.1038/s41564-020-0703-3
Jorgensen, 1983, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926, 10.1063/1.445869
Kawamoto, 2021, Native structure of flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetries, Nat. Commun., 12, 4223, 10.1038/s41467-021-24507-9
Khan, 2018, A coevolution-guided model for the rotor of the bacterial flagellar motor, Sci. Rep., 8, 11754, 10.1038/s41598-018-30293-0
Kobayashi, 2000, Bacterial strategies to inhabit acidic environments, J. Gen. Appl. Microbiol., 46, 235, 10.2323/jgam.46.235
Krah, 2016, On the ATP binding site of the ε subunit from bacterial F-type ATP synthases, Biochim. Biophys. Acta Bioenerg., 1857, 332, 10.1016/j.bbabio.2016.01.007
Krah, 2020, On the ion coupling mechanism of the MATE transporter ClbM, Biochim. Biophys. Acta Biomembr., 1862, 183137, 10.1016/j.bbamem.2019.183137
Krulwich, 2011, Molecular aspects of bacterial pH sensing and homeostasis, Nat. Rev. Microbiol., 9, 330, 10.1038/nrmicro2549
Lam, 2012, Multiple conformations of the FliG C-terminal domain provide insight into flagellar motor switching, Structure, 20, 315, 10.1016/j.str.2011.11.020
Lam, 2013, Structural basis of FliG-FliM interaction in Helicobacter pylori, Mol. Microbiol., 88, 798, 10.1111/mmi.12222
Lee, 2010, Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching, Nature, 466, 996, 10.1038/nature09300
Levenson, 2012, Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG, Biochemistry, 51, 5052, 10.1021/bi3004582
Li, 2011, Assembly and stability of flagellar motor in Escherichia coli, Mol. Microbiol., 80, 886, 10.1111/j.1365-2958.2011.07557.x
Lloyd, 1996, Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN, J. Bacteriol., 178, 223, 10.1128/jb.178.1.223-231.1996
Luo, 2015, A structural dissection of large protein-protein crystal packing contacts, Sci. Rep., 5, 14214, 10.1038/srep14214
Lynch, 2017, Co-folding of a FliF-FliG split domain forms the basis of the MS:C ring interface within the bacterial flagellar motor, Structure, 25, 317, 10.1016/j.str.2016.12.006
Maier, 2015, ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theor. Comput., 11, 3696, 10.1021/acs.jctc.5b00255
McWilliam, 2013, Analysis tool web services from the EMBL-EBI, Nucleic Acids Res., 41, W597, 10.1093/nar/gkt376
Minamino, 2015, The bacterial flagellar motor and its structural diversity, Trends Microbiol., 23, 267, 10.1016/j.tim.2014.12.011
Minamino, 2008, Molecular motors of the bacterial flagella, Curr. Opin. Struct. Biol., 18, 693, 10.1016/j.sbi.2008.09.006
Minamino, 2011, An energy transduction mechanism used in bacterial flagellar type III protein export, Nat. Commun., 2, 10.1038/ncomms1488
Minamino, 2011, Structural insight into the rotational switching mechanism of the bacterial flagellar motor, PLoS Biol., 9, 10.1371/journal.pbio.1000616
Morimoto, 2014, Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body, Mol. Microbiol., 91, 1214, 10.1111/mmi.12529
Parrinello, 1981, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys., 52, 7182, 10.1063/1.328693
Paul, 2011, Architecture of the flagellar rotor, EMBO J., 30, 2962, 10.1038/emboj.2011.188
Pettersen, 2004, UCSF Chimera - a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084
Qi, 2017, CHARMM-GUI MDFF/xMDFF utilizer for molecular dynamics flexible fitting simulations in various environments, J. Phys. Chem. B, 121, 3718, 10.1021/acs.jpcb.6b10568
Qin, 2017, Imaging the motility and chemotaxis machineries in Helicobacter pylori by cryo-electron tomography, J. Bacteriol., 199, 10.1128/JB.00695-16
Sardis, 2010, SecA: a tale of two protomers: MicroReview, Mol. Microbiol., 76, 1070, 10.1111/j.1365-2958.2010.07176.x
Schwede, 2003, SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Res., 31, 3381, 10.1093/nar/gkg520
Shen, 2006, Statistical potential for assessment and prediction of protein structures, Protein Sci., 15, 2507, 10.1110/ps.062416606
Slonczewski, 2009, Cytoplasmic pH measurement and homeostasis in bacteria and archaea, Adv. Microb. Physiol., 10.1016/S0065-2911(09)05501-5
Søndergaard, 2009, Structural artifacts in protein-ligand X-ray structures: implications for the development of docking scoring functions, J. Med. Chem., 52, 5673, 10.1021/jm8016464
Steinbach, 1994, New spherical-cutoff methods for long-range forces in macromolecular simulation, J. Comput. Chem., 15, 667, 10.1002/jcc.540150702
Terashima, 2008, 39
Terashima, 2020, Assembly mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in vibrio species, J. Bacteriol., 202, 10.1128/JB.00236-20
Thomas, 1999, Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor, Proc. Natl. Acad. Sci. U.S.A., 96, 10134, 10.1073/pnas.96.18.10134
Thomas, 2006, The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar typhimurium, J. Bacteriol., 188, 7039, 10.1128/JB.00552-06
Togashi, 1997, An extreme clockwise switch bias mutation in fliG of Salmonella typhimurium and its suppression by slow-motile mutations in motA and motB, J. Bacteriol., 179, 2994, 10.1128/jb.179.9.2994-3003.1997
Trabuco, 2009, Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography, Methods, 49, 174, 10.1016/j.ymeth.2009.04.005
Waterhouse, 2018, SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 46, W296, 10.1093/nar/gky427
Webb, 2016, Comparative protein structure modeling using MODELLER, Curr. Protoc. Bioinforma., 15, 5.6.1
Xue, 2018, Crystal structure of the FliF-FliG complex from Helicobacter pylori yields insight into the assembly of the motor MS-C ring in the bacterial flagellum, J. Biol. Chem., 293, 2066, 10.1074/jbc.M117.797936
