Bridging the N-terminal and middle domains in FliG of the flagellar rotor

Current Research in Structural Biology - Tập 4 - Trang 59-67 - 2022
Dagnija Tupiņa1,2, Alexander Krah1, Jan K. Marzinek1, Lorena Zuzic1,3, Adam A. Moverley4, Chrystala Constantinidou2, Peter J. Bond1,5
1Bioinformatics Institute, A∗STAR, 30 Biopolis Street, 138671, Singapore
2Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
3Department of Chemistry, Faculty of Science and Engineering, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, United Kingdom
4Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
5Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore

Tài liệu tham khảo

Abraham, 2015, Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1–2, 19, 10.1016/j.softx.2015.06.001 Arpino, 2012, Crystal structure of enhanced green fluorescent protein to 1.35 Å resolution reveals alternative conformations for Glu222, PLoS One, 7, 10.1371/journal.pone.0047132 D, 2002 Baker, 2016, Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor, Nat. Struct. Mol. Biol., 23, 197, 10.1038/nsmb.3172 Beeby, 2016, Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold, Proc. Natl. Acad. Sci. U. S. A., 113, E1917, 10.1073/pnas.1518952113 Benkert, 2008, QMEAN: a comprehensive scoring function for model quality assessment, Proteins Struct. Funct. Genet., 71, 261, 10.1002/prot.21715 Brown, 2002, Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG, EMBO J., 21, 3225, 10.1093/emboj/cdf332 Bussi, 2007, Canonical sampling through velocity rescaling, J. Chem. Phys., 126 Carroll, 2020, The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching, Elife, 9, 10.7554/eLife.61446 Carugo, 1997, Protein-protein crystal-packing contacts, Protein Sci., 6, 2261, 10.1002/pro.5560061021 Chaban, 2015, The flagellum in bacterial pathogens: for motility and a whole lot more, Semin. Cell Dev. Biol., 46, 91, 10.1016/j.semcdb.2015.10.032 Chang, 2020, Molecular mechanism for rotational switching of the bacterial flagellar motor, Nat. Struct. Mol. Biol., 10.1038/s41594-020-0497-2 Chevance, 2008, Coordinating assembly of a bacterial macromolecular machine, Nat. Rev. Microbiol., 6, 455, 10.1038/nrmicro1887 Darden, 1993, Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089, 10.1063/1.464397 Dey, 2018, PDB-wide identification of biological assemblies from conserved quaternary structure geometry, Nat. Methods, 15, 67, 10.1038/nmeth.4510 Edgar, 2004, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792, 10.1093/nar/gkh340 Fiser, 2003, ModLoop: automated modeling of loops in protein structures, Bioinformatics, 19, 2500, 10.1093/bioinformatics/btg362 Francis, 1994, Isolation, characterization and structure of bacterial flagllar motors containing the switch complex, J. Mol. Biol., 235, 1261, 10.1006/jmbi.1994.1079 Gordon, 2005, H++: a server for estimating pKas and adding missing hydrogens to macromolecules, Nucleic Acids Res., 33, W368, 10.1093/nar/gki464 Hess, 1997, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463, 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H Hollingsworth, 2018, Molecular dynamics simulation for all, Neuron, 99, 1129, 10.1016/j.neuron.2018.08.011 Huang, 2013, CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data, J. Comput. Chem., 34, 2135, 10.1002/jcc.23354 Huang, 2016, CHARMM36m: an improved force field for folded and intrinsically disordered proteins, Nat. Methods, 14, 71, 10.1038/nmeth.4067 Humphrey, 1996, Visual molecular dynamics, J. Mol. Graph., 14, 10.1016/0263-7855(96)00018-5 Johnson, 2020, Symmetry mismatch in the MS-ring of the bacterial flagellar rotor explains the structural coordination of secretion and rotation, Nat. Microbiol., 5, 966, 10.1038/s41564-020-0703-3 Jorgensen, 1983, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926, 10.1063/1.445869 Kawamoto, 2021, Native structure of flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetries, Nat. Commun., 12, 4223, 10.1038/s41467-021-24507-9 Khan, 2018, A coevolution-guided model for the rotor of the bacterial flagellar motor, Sci. Rep., 8, 11754, 10.1038/s41598-018-30293-0 Kobayashi, 2000, Bacterial strategies to inhabit acidic environments, J. Gen. Appl. Microbiol., 46, 235, 10.2323/jgam.46.235 Krah, 2016, On the ATP binding site of the ε subunit from bacterial F-type ATP synthases, Biochim. Biophys. Acta Bioenerg., 1857, 332, 10.1016/j.bbabio.2016.01.007 Krah, 2020, On the ion coupling mechanism of the MATE transporter ClbM, Biochim. Biophys. Acta Biomembr., 1862, 183137, 10.1016/j.bbamem.2019.183137 Krulwich, 2011, Molecular aspects of bacterial pH sensing and homeostasis, Nat. Rev. Microbiol., 9, 330, 10.1038/nrmicro2549 Lam, 2012, Multiple conformations of the FliG C-terminal domain provide insight into flagellar motor switching, Structure, 20, 315, 10.1016/j.str.2011.11.020 Lam, 2013, Structural basis of FliG-FliM interaction in Helicobacter pylori, Mol. Microbiol., 88, 798, 10.1111/mmi.12222 Lee, 2010, Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching, Nature, 466, 996, 10.1038/nature09300 Levenson, 2012, Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG, Biochemistry, 51, 5052, 10.1021/bi3004582 Li, 2011, Assembly and stability of flagellar motor in Escherichia coli, Mol. Microbiol., 80, 886, 10.1111/j.1365-2958.2011.07557.x Lloyd, 1996, Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN, J. Bacteriol., 178, 223, 10.1128/jb.178.1.223-231.1996 Luo, 2015, A structural dissection of large protein-protein crystal packing contacts, Sci. Rep., 5, 14214, 10.1038/srep14214 Lynch, 2017, Co-folding of a FliF-FliG split domain forms the basis of the MS:C ring interface within the bacterial flagellar motor, Structure, 25, 317, 10.1016/j.str.2016.12.006 Maier, 2015, ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theor. Comput., 11, 3696, 10.1021/acs.jctc.5b00255 McWilliam, 2013, Analysis tool web services from the EMBL-EBI, Nucleic Acids Res., 41, W597, 10.1093/nar/gkt376 Minamino, 2015, The bacterial flagellar motor and its structural diversity, Trends Microbiol., 23, 267, 10.1016/j.tim.2014.12.011 Minamino, 2008, Molecular motors of the bacterial flagella, Curr. Opin. Struct. Biol., 18, 693, 10.1016/j.sbi.2008.09.006 Minamino, 2011, An energy transduction mechanism used in bacterial flagellar type III protein export, Nat. Commun., 2, 10.1038/ncomms1488 Minamino, 2011, Structural insight into the rotational switching mechanism of the bacterial flagellar motor, PLoS Biol., 9, 10.1371/journal.pbio.1000616 Morimoto, 2014, Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body, Mol. Microbiol., 91, 1214, 10.1111/mmi.12529 Parrinello, 1981, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys., 52, 7182, 10.1063/1.328693 Paul, 2011, Architecture of the flagellar rotor, EMBO J., 30, 2962, 10.1038/emboj.2011.188 Pettersen, 2004, UCSF Chimera - a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084 Qi, 2017, CHARMM-GUI MDFF/xMDFF utilizer for molecular dynamics flexible fitting simulations in various environments, J. Phys. Chem. B, 121, 3718, 10.1021/acs.jpcb.6b10568 Qin, 2017, Imaging the motility and chemotaxis machineries in Helicobacter pylori by cryo-electron tomography, J. Bacteriol., 199, 10.1128/JB.00695-16 Sardis, 2010, SecA: a tale of two protomers: MicroReview, Mol. Microbiol., 76, 1070, 10.1111/j.1365-2958.2010.07176.x Schwede, 2003, SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Res., 31, 3381, 10.1093/nar/gkg520 Shen, 2006, Statistical potential for assessment and prediction of protein structures, Protein Sci., 15, 2507, 10.1110/ps.062416606 Slonczewski, 2009, Cytoplasmic pH measurement and homeostasis in bacteria and archaea, Adv. Microb. Physiol., 10.1016/S0065-2911(09)05501-5 Søndergaard, 2009, Structural artifacts in protein-ligand X-ray structures: implications for the development of docking scoring functions, J. Med. Chem., 52, 5673, 10.1021/jm8016464 Steinbach, 1994, New spherical-cutoff methods for long-range forces in macromolecular simulation, J. Comput. Chem., 15, 667, 10.1002/jcc.540150702 Terashima, 2008, 39 Terashima, 2020, Assembly mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in vibrio species, J. Bacteriol., 202, 10.1128/JB.00236-20 Thomas, 1999, Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor, Proc. Natl. Acad. Sci. U.S.A., 96, 10134, 10.1073/pnas.96.18.10134 Thomas, 2006, The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar typhimurium, J. Bacteriol., 188, 7039, 10.1128/JB.00552-06 Togashi, 1997, An extreme clockwise switch bias mutation in fliG of Salmonella typhimurium and its suppression by slow-motile mutations in motA and motB, J. Bacteriol., 179, 2994, 10.1128/jb.179.9.2994-3003.1997 Trabuco, 2009, Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography, Methods, 49, 174, 10.1016/j.ymeth.2009.04.005 Waterhouse, 2018, SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 46, W296, 10.1093/nar/gky427 Webb, 2016, Comparative protein structure modeling using MODELLER, Curr. Protoc. Bioinforma., 15, 5.6.1 Xue, 2018, Crystal structure of the FliF-FliG complex from Helicobacter pylori yields insight into the assembly of the motor MS-C ring in the bacterial flagellum, J. Biol. Chem., 293, 2066, 10.1074/jbc.M117.797936