Bắc cầu khoảng cách: Liệu sự khép kín đối với nguyên nhân hiệu quả có dẫn đến các thuộc tính giống như lượng tử?

Axiomathes - Tập 21 - Trang 315-330 - 2011
José Raúl Naranjo1,2,3
1Evaluation Research of Complementary Medicine, Department of Environmental Health Sciences, University Medical Center Freiburg, Freiburg, Germany
2Institute of Biology I, University of Freiburg, Freiburg, Germany
3Epilepsy Center, University Medical Center Freiburg, Freiburg, Germany

Tóm tắt

Bài báo này khám phá những điểm tương đồng giữa cấu trúc khái niệm của lý thuyết lượng tử và sinh học quan hệ như đã phát triển trong trường phái sinh học lý thuyết Rashevsky-Rosen-Louie. Với mục đích này, lý thuyết lượng tử tổng quát và hình thức trừu tượng của hệ thống (M,R) được trình bày một cách ngắn gọn. Đặc biệt, khái niệm bất biến tổ chức và danh tính quan hệ được hình thức hóa toán học và một ví dụ cụ thể được đưa ra. Nhiều thuộc tính giống như lượng tử trong các hệ thống phức tạp của Rosen, như tính bổ sung và tính không tách biệt, được thảo luận. Tổng thể, công trình này nhấn mạnh vai trò có thể có của tính tự tham chiếu và tính không định trước trong lý thuyết lượng tử.

Từ khóa


Tài liệu tham khảo

Abbott D, Davies P, Pati A (eds) (2008) Quantum aspects of life. Imperial College Press, London Atmanspacher H, Römer H, Walach H (2002) Weak quantum theory: complementarity and entanglement in physics and beyond. Found Phys 32:379–406 Atmanspacher H, Filk T, Römer H (2006) Weak quantum theory: formal framework and selected applications. In: Adenier G, Khrennikov A, Nieuwenhuizen Th (eds) Quantum theory: reconsideration of foundations. American Institute of Physics, New York Atmanspacher H, Bach M, Filk T, Kornmeier J, Römer H (2008) Cognitive time scales in a Necker-Zeno model for bistable perception. Open Cybernet Syst J 2:234–251 Bohr N (1933) Light and life. Nature 131:421–423, 457–459 Boogerd F, Bruggeman F, Hofmeyr J, Westerhoff H (eds) (2007) Systems biology: philosophical foundations. Elsevier, Amsterdam Breuer T (1995) The impossibility of accurate state self-measurements. Philos Sci 62:197–214 Brooks R (2001) The relationship between matter and life. Nature 409:409–411 Bruzza P, Gabora L (eds) (2009) Quantum cognition. J Math Psychol 53(5):303–452 Bruzza P, Sofge D, Lawless W, van Rijsbergen K, Klusch M (eds) (2009) Quantum interaction: third international symposium, QI 2009. Springer-Verlag Berlin, Heidelberg Chiara ML (1977) Logical self-reference: set theoretical paradoxes and the measurement problem in quantum mechanics. J Philos Logic 6:331–347 Delbrück M (1949) A physicist looks at biology. Trans Connect Acad Arts Sci 38:173–190 Domondon A (2006) Bringing physics to bear on the phenomenon of life. Stud Hist Philos Biol Biomed Sci 37:433–458 Elsasser W (1969) The mathematical expression of generalized complementarity. J Theor Biol 25:276–296 Engel GS, Calhoun TR, Read EL, Ahn TK, Mančal T, Cheng YC, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–784 Filk T, von Mueller A (2010) A categorical framework for quantum theory. Ann Phys 522:783–801 Greenstein G, Zajonc A (2006) The quantum challenge: modern research on the foundations of quantum mechanics, 2nd edn. Jones and Bartlett Publishers, Boston Groessing G (2005) Observing quantum systems. Kybernetes 34:222–240 Healey R (2008) Holism and nonseparability in physics. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/physics-holism/ Jammer M (1974) The philosophy of quantum mechanics. Wiley, New York Kitto K (2008) Why quantum theory? In: Proceedings of the second quantum interaction symposium. College Publications, pp 11–18 Lee H, Cheng Y, Fleming G (2007) Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316:1462–1465 Letelier JC, Marín G, Mpodozis J (2003 ) Autopoietic and (M,R) systems. J Theor Biol 222:261–272 Letelier JC, Soto-Andrade J, Guíñez F, Cornish-Bowden A, Luz M (2006) Organizational invariance and metabolic closure: analysis in terms of (M,R) systems. J Theor Biol 238:949–961 Liboff R (1980) Introductory quantum mechanics. Addison-Wesley, New York Louie AH (2006) (M, R) systems and their realizations. Axiomathes 16:35–64 Louie AH (2007a) A living system must have noncomputable models. Artif Life 13:293–297 Louie AH (2007b) A Rosen etymology. Chem Biodiv 4:2296–2314 Louie AH (2007c) Topology and life redux: Robert Rosen’s relational diagrams of living systems. Axiomathes 17:109–136 Louie AH (2009) More than life itself: a synthetic continuation in relational biology. Ontos Verlag, Frankfurt Louie AH (2010a) Artificial claims about synthetic life: the view from relational biology. J Cosmol 8 (chapter 19) Louie AH (2010b) Personal communication Mazzocchi F (2010) Complementarity in biology. EMBO reports 11:339–344 Mckaughan D (2005) The influence of Niels Bohr on Max Delbrück. Isis 96:507–529 Ogryzko V (2008) Erwin Schrödinger, Francis Crick and epigenetic stability. Biol Direct 3:15 Peretó J (2005) Controversies on the origin of life. Int Microbiol 8:23–31 Rae A (2004) Quantum physics: illusion or reality? 2nd edn. Cambridge University Press, New York Rasmussen S, Chen L, Deamer D, Krakauer D, Packard N, Stadler P, Bedau M (2004) Transitions from nonliving to living matter. Science 303:963–965 Rieper E, Gauger E, Morton J, Benjamin S, Vedral V (2009) Quantum coherence and entanglement in the avian compass. arXiv:0906.3725 Rosen R (1960) A quantum-theoretic approach to genetic problems. Bull Mat Biophys 22:227–255 Rosen R (1974) The role of quantum theory in biology. Int J Quantum Chem 8:229–232 Rosen R (1991) Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life. Columbia University Press, New York Rosen R (2000) Essays on life itself. Columbia University Press, New York Rosen R (2006) Autobiographical reminiscences of Robert Rosen. Axiomathes 16:1–23 Schrödinger E (1944) What is life? The physical aspect of the living cell. Cambridge University Press, Cambridge Small J (2006) Why do quantum systems implement self-referential logic? A simple question with a catastrophic answer. AIP Conf Proc 839:167–183 Szostak J, Bartel D, Luisi P (2001) Synthesizing life. Nature 409:387–390 Varela F (1981) Autonomy and autopoiesis. In: Roth Q, Schwengler H (eds) Self-organizing systems. Campus, Frankfurt Vedral V (2008) Quantifying entanglement in macroscopic systems. Nature 453:1004–1007 von Lucadou W, Römer H, Walach H (2007) Synchronistic phenomena as entanglement correlations in generalized quantum theory. J Conscious Stud 14:50–74 von Stillfried N (2010) Theoretical and experimental explorations of generalized quantum theory. PhD Thesis Wheeler J (2006) How come the quantum? Ann NY Acad Sci 480:304–316 Woese C (2004) A new biology for a new century. Microbiol Mol Biol Rev 68:173–186