Bridging the Gap Between Theory and Experiment to Derive a Detailed Understanding of Hammerhead Ribozyme Catalysis
Tài liệu tham khảo
Gilbert, 1986, The RNA, world, Nature, 319, 618, 10.1038/319618a0
Scott, 1996, Molecular palaeontology: understanding catalytic mechanisms in the RNA world by excavating clues from a ribozyme three-dimensional structure, Biochem. Soc. Trans., 24, 604, 10.1042/bst0240604
Gesteland, 1999
Yarus, 1999, Boundaries for an RNA world, Curr. Opin. Chem. Biol., 3, 260, 10.1016/S1367-5931(99)80041-6
Chen, 2007, Ribozyme catalysis of metabolism in the RNA world, Chem. Biodivers., 4, 633, 10.1002/cbdv.200790055
Lilley, 2008, Ribozymes and RNA Catalysis, 66
Scott, 2007, Ribozymes, Curr. Opin. Struct. Biol., 13, 280, 10.1016/j.sbi.2007.05.003
Bartel, 2009, MicroRNAs: target recognition and regulatory functions, Cell, 136, 215, 10.1016/j.cell.2009.01.002
Montange, 2008, Riboswitches: emerging themes in RNA structure and function, Annu. Rev. Biophys., 37, 117, 10.1146/annurev.biophys.37.032807.130000
Shabalina, 2008, Origins and evolution of eukaryotic RNA interference, Trends Ecol. Evol., 23, 578, 10.1016/j.tree.2008.06.005
Sotiropoulou, 2009, Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell, RNA, 15, 1443, 10.1261/rna.1534709
Cech, 1981, In vitro splicing of the ribosomal RNA precursor of tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence, Cell, 27, 487, 10.1016/0092-8674(81)90390-1
Sharp, 2009, The centrality of RNA, Cell, 136, 577, 10.1016/j.cell.2009.02.007
Wilson, 2009, Biochemistry. The evolution of ribozyme chemistry, Science, 323, 1436, 10.1126/science.1169231
Rubenstein, 2004, A review of antisense oligonucleotides in the treatment of human disease, Drugs Future, 29, 893, 10.1358/dof.2004.029.09.854176
Vaish, 2002, Monitoring post-translation modification of proteins with allosteric ribozymes, Nat. Biotech., 20, 810, 10.1038/nbt719
Breaker, 2002, Engineered allosteric ribozymes as biosensor components, Curr. Opin. Biotechnol., 13, 31, 10.1016/S0958-1669(02)00281-1
Rasmussen, 2007, Hitting bacteria at the heart of the central dogma: sequence-specific inhibition, Microb. Cell Fact., 6, 24, 10.1186/1475-2859-6-24
Mackerell, 2008, Molecular dynamics simulations of nucleic acid-protein complexes, Curr. Opin. Struct. Biol., 18, 194, 10.1016/j.sbi.2007.12.012
McDowell, 2007, Molecular dynamics simulations of RNA: an in silico single molecule approach, Biopolymers, 85, 169, 10.1002/bip.20620
Norberg, 2002, Molecular dynamics applied to nucleic acids, Acc. Chem. Res., 35, 465, 10.1021/ar010026a
Orozco, 2003, Theoretical methods for the simulation of nucleic acids, Chem. Soc. Rev., 32, 350, 10.1039/B207226M
Sherwood, 2008, Multiscale methods for macromolecular simulations, Curr. Opin. Struct. Biol., 18, 630, 10.1016/j.sbi.2008.07.003
Ayton, 2007, Multiscale modeling of biomolecular systems: in serial and in parallel, Curr. Opin. Struct. Biol., 17, 192, 10.1016/j.sbi.2007.03.004
2009, Vol. 7
Gao, 1995, Methods and applications of combined quantum mechanical and molecular mechanical potentials, Rev Comput Chem., 7, 119
Hawkins, 1998, Universal solvation models, 209
Monard, 1999, Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems, Acc. Chem. Res., 32, 904, 10.1021/ar970218z
Warshel, 2002, Molecular dynamics simulations of biological reactions, Acc. Chem. Res., 35, 385, 10.1021/ar010033z
Warshel, 2003, Computer simulations of enzyme catalysis: methods, progress, and insights, Annu. Rev. Biophys. Biomol. Struct., 32, 425, 10.1146/annurev.biophys.32.110601.141807
Senn, 2007, QM/MM studies of enzymes, Curr. Opin. Chem. Biol., 11, 182, 10.1016/j.cbpa.2007.01.684
Orozco, 2008, Recent advances in the study of nucleic acid flexibility by molecular dynamics, Curr. Opin. Struct. Biol., 18, 185, 10.1016/j.sbi.2008.01.005
Auffinger, 2007, Nucleic acid solvation: from outside to insight, Curr. Opin. Struct. Biol., 17, 325, 10.1016/j.sbi.2007.05.008
Cheatham, 2004, Simulation and modeling of nucleic acid structure, dynamics and interactions, Curr. Opin. Struct. Biol., 14, 360, 10.1016/j.sbi.2004.05.001
Chen, 2008, RNA folding: conformational statistics, folding kinetics, and ion electrostatics, Annu. Rev. Biophys., 37, 197, 10.1146/annurev.biophys.37.032807.125957
Hashem, 2009, A short guide for molecular dynamics simulations of RNA systems, Methods, 47, 187, 10.1016/j.ymeth.2008.09.020
Forster, 1987, Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites, Cell, 49, 211, 10.1016/0092-8674(87)90562-9
Scott, 1999, Biophysical and biochemical investigations of RNA catalysis in the hammerhead ribozyme, Q. Rev. Biophys., 32, 241, 10.1017/S003358350000353X
Blount, 2002, The hammerhead ribozyme, Biochem. Soc. Trans., 30, 1119, 10.1042/bst0301119
Scott, 1998, RNA catalysis, Curr. Opin. Struct. Biol., 8, 720, 10.1016/S0959-440X(98)80091-2
Scott, 2007, Ribozymes, Curr. Opin. Struct. Biol., 17, 280, 10.1016/j.sbi.2007.05.003
Doherty, 2001, Ribozyme structures and mechanisms, Annu. Rev. Biophys. Biomol. Struct., 30, 457, 10.1146/annurev.biophys.30.1.457
Rios, 2009, Model systems: how chemical biologists study RNA, Curr. Opin. Chem. Biol., 13, 660, 10.1016/j.cbpa.2009.09.028
Cochrane, 2008, Catalytic strategies of self-cleaving ribozymes, Acc. Chem. Res., 41, 1027, 10.1021/ar800050c
Bevilacqua, 2006, Nucleobase catalysis in ribozyme mechanism, Curr. Opin. Chem. Biol., 10, 455, 10.1016/j.cbpa.2006.08.014
Sarver, 1990, Ribozymes as potential anti-HIV-1 therapeutic agents, Science, 247, 1222, 10.1126/science.2107573
Michienzi, 2000, Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA, Proc. Natl. Acad. Sci. USA., 97, 8955, 10.1073/pnas.97.16.8955
Nazari, 2008, Inhibition of human immunodeficiency virus-1 entry using vectors expressing a multimeric hammerhead ribozyme targeting the CCR5 mRNA, J. Gen. Virol., 89, 2252, 10.1099/vir.0.2008/001222-0
Unwalla, 2008, Use of a U16 snoRNA-containing ribozyme library to identify ribozyme targets in HIV-1, Mol. Ther., 16, 1113, 10.1038/mt.2008.54
Snyder, 1993, Ribozyme-mediated inhibition of bcr-abl gene expression in a Philadelphia chromosome-positive cell line, Blood, 82, 600, 10.1182/blood.V82.2.600.600
Feng, 2001, Intracellular inhibition of the replication of hepatitis B virus by hammerhead ribozymes, J. Gastroenterol. Hepatol., 16, 1125, 10.1046/j.1440-1746.2001.02548.x
Weinberg, 2000, Hammerhead ribozyme-mediated inhibition of hepatitis B virus X gene expression in cultured cells, J. Hepatol., 33, 142, 10.1016/S0168-8278(00)80171-3
Sano, 2007, Hammerhead ribozyme-based target discovery, Methods Mol. Biol., 360, 143
Weinberg, 2007, Effective anti-hepatitis B virus hammerhead ribozymes derived from multimeric precursors, Oligonucleotides, 17, 104, 10.1089/oli.2006.0049
Ferbeyre, 2000, Distribution of hammerhead and hammerhead-like RNA motifs through the GenBank, Genome Res., 10, 1011, 10.1101/gr.10.7.1011
Martick, 2008, A discontinuous hammerhead ribozyme embedded in a mammalian messenger RNA, Nature, 454, 899, 10.1038/nature07117
Takagi, 2004, Ribozyme mechanisms, Top. Curr. Chem., 232, 213, 10.1007/b13783
Shepotinovskaya, 2008, Catalytic diversity of extended hammerhead ribozymes, Biochemistry, 47, 7034, 10.1021/bi7025358
Thomas, 2008, Probing general base catalysis in the hammerhead ribozyme, J. Am. Chem. Soc., 130, 15467, 10.1021/ja804496z
Thomas, 2009, Probing general acid catalysis in the hammerhead ribozyme, J. Am. Chem. Soc., 131, 1135, 10.1021/ja807790e
Blount, 2005, The structure-function dilemma of the hammerhead ribozyme, Annu. Rev. Biophys. Biomol. Struct., 34, 415, 10.1146/annurev.biophys.34.122004.184428
Suzumura, 2004, NMR-based reappraisal of the coordination of a metal ion at the pro- Rp oxygen of the A9/G10.1 site in a hammerhead ribozyme, J. Am. Chem. Soc., 126, 15504, 10.1021/ja0472937
Wang, 1999, Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate, Biochemistry, 38, 14363, 10.1021/bi9913202
Tanaka, 2004, Nature of the chemical bond formed with the structural metal ion at the A9/G10.1 motif derived from hammerhead ribozymes, J. Am. Chem. Soc., 126, 744, 10.1021/ja036826t
Tanaka, 2005, NMR spectroscopic analyses of functional nucleic acids-metal interaction and their solution structure analyses, Nucleic Acids Symp. Ser. (Oxf), 49, 51, 10.1093/nass/49.1.51
Vogt, 2006, Coordination environment of a site-bound metal ion in the hammerhead ribozyme determined by 15N and 2H ESEEM spectroscopy, J. Am. Chem. Soc., 128, 16764, 10.1021/ja057035p
Przybilski, 2007, The tolerance to exchanges of the Watson Crick base pair in the hammerhead ribozyme core is determined by surrounding elements, RNA, 13, 1625, 10.1261/rna.631207
Nelson, 2008, Hammerhead redux: does the new structure fit the old biochemical data?, RNA, 14, 605, 10.1261/rna.912608
Sheldon, 1989, Mutagenesis analysis of a self-cleaving RNA, Nucleic Acids Res., 17, 5679, 10.1093/nar/17.14.5679
Scott, 1996, Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme, Science, 274, 2065, 10.1126/science.274.5295.2065
Murray, 1998, The structural basis of hammerhead ribozyme self-cleavage, Cell, 92, 665, 10.1016/S0092-8674(00)81134-4
Murray, 2000, Capture and visualization of a catalytic RNA enzyme-product complex using crystal lattice trapping and x-Ray holographic reconstruction, Mol. Cell, 5, 279, 10.1016/S1097-2765(00)80423-2
Martick, 2006, Tertiary contacts distant from the active site prime a ribozyme for catalysis, Cell, 126, 309, 10.1016/j.cell.2006.06.036
Martick, 2008, Solvent structure and hammerhead ribozyme catalysis, Chem. Biol., 15, 332, 10.1016/j.chembiol.2008.03.010
Lee, 2007, Insight into the role of Mg2+ in hammerhead ribozyme catalysis from x-ray crystallography and molecular dynamics simulation, J. Chem. Theory Comput., 3, 325, 10.1021/ct6003142
Lee, 2008, Role of Mg2+ in hammerhead ribozyme catalysis from molecular simulation, J. Am. Chem. Soc., 130, 3053, 10.1021/ja076529e
Lee, 2008, Origin of mutational effects at the C3 and G8 positions on hammerhead ribozyme catalysis from molecular dynamics simulations, J. Am. Chem. Soc., 130, 7168, 10.1021/ja711242b
Lee, 2009, Unraveling the mechanisms of ribozyme catalysis with multi-scale simulations
Wong, 2011, Active participation of Mg2+ ion in the reaction coordinate of RNA self-cleavage catalyzed by the hammerhead ribozyme, J. Chem. Theory Comput., 7, 1, 10.1021/ct100467t
Scott, 2007, Morphing the minimal and full-length hammerhead ribozymes: implications for the cleavage mechanism, Biol. Chem., 388, 727, 10.1515/BC.2007.087
Haseloff, 1988, Simple RNA enzymes with new and highly specific endoribonuclease activities, Nature, 334, 585, 10.1038/334585a0
Birikh, 1997, The structure, function and application of the hammerhead ribozyme, Eur. J. Biochem., 245, 1, 10.1111/j.1432-1033.1997.t01-3-00001.x
Ruffner, 1990, Sequence requirements of the hammerhead RNA self-cleavage reaction, Biochemistry, 29, 10695, 10.1021/bi00499a018
Khvorova, 2003, Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity, Nat. Struct. Biol., 10, 708, 10.1038/nsb959
Canny, 2007, Efficient ligation of the Schistosoma hammerhead ribozyme, Biochemistry, 46, 3826, 10.1021/bi062077r
Canny, 2004, Fast cleavage kinetics of a natural hammerhead ribozyme, J. Am. Chem. Soc., 126, 10848, 10.1021/ja046848v
Pley, 1994, Three-dimensional structure of a hammerhead ribozyme, Nature, 372, 68, 10.1038/372068a0
Scott, 1995, The crystal structure of an All-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage, Cell, 81, 991, 10.1016/S0092-8674(05)80004-2
Uhlenbeck, 2003, Less isn't always more, RNA, 9, 1415, 10.1261/rna.5155903
McKay, 1996, Structure and function of the hammerhead ribozyme: an unfinished story, RNA, 2, 395
Ruffner, 1990, Thiophosphate interference experiments locate phosphates important for the hammerhead RNA self-cleavage reaction, Nucleic Acids Res., 18, 6025, 10.1093/nar/18.20.6025
Peracchi, 1997, Involvement of a specific metal ion in the transition of the hammerhead ribozyme to its catalytic conformation, J. Biol. Chem., 272, 26822, 10.1074/jbc.272.43.26822
Murray, 2000, Does a single metal ion bridge the A-9 and scissile phosphate groups in the catalytically active hammerhead ribozyme structure?, J. Mol. Biol., 296, 33, 10.1006/jmbi.1999.3428
Tuschl, 1993, Importance of exocyclic base functional groups of central core guanosines for hammerhead ribozyme activity, Biochemistry, 32, 11658, 10.1021/bi00094a023
Peracchi, 1996, Rescue of abasic hammerhead ribozymes by exogenous addition of specific bases, Proc. Natl. Acad. Sci., 93, 11522, 10.1073/pnas.93.21.11522
Han, 2005, Model for general acid–base catalysis by the hammerhead ribozyme: pH-activity relationships of G8 and G12 variants at the putative active site, Biochemistry, 44, 7864, 10.1021/bi047941z
Simorre, 1997, A conformational change in the catalytic core of the hammerhead ribozyme upon cleavage of an RNA substrate, Biochemistry, 36, 518, 10.1021/bi9620520
Beigelman, 1995, Chemical modification of hammerhead ribozymes, J. Biol. Chem., 270, 25702, 10.1074/jbc.270.43.25702
Nelson, 2006, When to believe what you see, Mol. Cell, 23, 447, 10.1016/j.molcel.2006.08.001
Przybilski, 2006, The hammerhead ribozyme structure brought in line, Chem. Biol. Chem., 7, 1641, 10.1002/cbic.200600312
Westhof, 2007, A tale in molecular recognition: the hammerhead ribozyme, J. Mol. Recognit., 20, 1, 10.1002/jmr.806
Mayaan, 2007, CHARMM force field parameters for simulation of reactive intermediates in native and thio-substituted ribozymes, J. Comput. Chem., 28, 495, 10.1002/jcc.20474
Foloppe, 2000, All-atom empirical force field for nucleic acids: I Parameter optimization based on small molecule and condensed phase macromolecular target data, J. Comput. Chem., 21, 86, 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
MacKerell, 2000, All-Atom empirical force field for nucleic Acids: II. application to molecular dynamics simulations of DNA and RNA in solution, J. Comput. Chem., 21, 105, 10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P
Nam, 2007, Specific reaction parametrization of the AM1/d Hamiltonian for phosphoryl transfer reactions: H, O, and P atoms, J. Chem. Theory Comput., 3, 486, 10.1021/ct6002466
Brooks, 1983, Charmm: a program for macromolecular energy minimization and dynamics calculations, J. Comput. Chem., 4, 187, 10.1002/jcc.540040211
Jorgensen, 1983, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926, 10.1063/1.445869
Andersen, 1980, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys., 72, 2384, 10.1063/1.439486
Hoover, 1985, Canonical dynamics: equilibration phase-space distributions, Phys. Rev. A, 31, 1695, 10.1103/PhysRevA.31.1695
Nose, 1983, Constant pressure molecular dynamics for molecular systems, Mol. Phys., 50, 1055, 10.1080/00268978300102851
Essmann, 1995, A smooth particle mesh Ewald method, J. Chem. Phys., 103, 8577, 10.1063/1.470117
Sagui, 1999, Molecular dynamics simulations of biomolecules: long-range electrostatic effects, Annu. Rev. Biophys. Biomol. Struct., 28, 155, 10.1146/annurev.biophys.28.1.155
Allen, 1987
Ryckaert, 1977, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-Alkanes, J. Comput. Phys., 23, 327, 10.1016/0021-9991(77)90098-5
Ponomarev, 2004, Ion motions in molecular dynamics simulations on DNA, Proc. Natl. Acad. Sci. USA., 101, 14771, 10.1073/pnas.0406435101
Hutter, 1998, Modeling the bacterial photosynthetic reaction center. 1. magnesium parameters for the semiempirical AM1 method developed using a genetic algorithm, J. Phys. Chem. B, 102, 8080, 10.1021/jp9805205
Gao, 1998, A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations, J. Phys. Chem. A, 102, 4714, 10.1021/jp9809890
Nam, 2005, An efficient linear-scaling Ewald method for long-range electrostatic interactions in combined QM/MM calculations, J. Chem. Theory Comput., 1, 2, 10.1021/ct049941i
Lambert, 2006, Three conserved guanosines approach the reaction site in native and minimal hammerhead ribozymes, Biochemistry, 45, 7140, 10.1021/bi052457x
Boots, 2008, Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme, RNA, 14, 2212, 10.1261/rna.1010808
Roychowdhury-Saha, 2007, Distinct reaction pathway promoted by non-divalent-metal cations in a tertiary stabilized hammerhead ribozyme, RNA, 13, 841, 10.1261/rna.339207
Ward, 2012, Ground-state coordination of a catalytic metal to the scissile phosphate of a tertiary-stabilized hammerhead ribozyme, RNA, 18, 16, 10.1261/rna.030239.111
Imhof, 2006, AM1/d Parameters for magnesium in metalloenzymes, J. Chem. Theory Comput., 2, 1050, 10.1021/ct600092c
Perez, 2007, Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers, Biophys. J., 92, 3817, 10.1529/biophysj.106.097782
Horn, 2004, Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew, J. Chem. Phys., 120, 9665, 10.1063/1.1683075
Joung, 2008, Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations, J. Phys. Chem. B, 112, 9020, 10.1021/jp8001614
Torrie, 1977, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, J. Comput. Phys., 23, 187, 10.1016/0021-9991(77)90121-8
Kumar, 1992, The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method, J. Comput. Chem., 13, 1011, 10.1002/jcc.540130812
Roux, 1995, The calculation of the potential of mean force using computer simulations, Comput. Phys. Commun., 91, 275, 10.1016/0010-4655(95)00053-I
Murray, 1998, The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone, Chem. Biol., 5, 587, 10.1016/S1074-5521(98)90116-8
O'Rear, 2001, Comparison of the hammerhead cleavage reactions stimulated by monovalent and divalent cations, RNA, 7, 537, 10.1017/S1355838201002461
Curtis, 2001, The hammerhead cleavage reaction in monovalent cations, RNA, 7, 546, 10.1017/S1355838201002357
Lee, 2009, Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation, J. Mol. Biol., 388, 195, 10.1016/j.jmb.2009.02.054
Schnabl, 2010, Controlling ribozyme activity by metal ions, Curr. Opin. Chem. Biol., 14, 269, 10.1016/j.cbpa.2009.11.024
Torres, 1998, Molecular dynamics study displays near in-line attack conformations in the hammerhead ribozyme self-cleavage reaction, Proc. Natl. Acad. Sci. USA., 95, 11077, 10.1073/pnas.95.19.11077
MacQueen, 1967, Some methods for classification and analysis of multivariate observations, Vol. 1, 281
Davis, 2007, Role of metal ions in the tetraloop-receptor complex as analyzed by NMR, RNA, 13, 76, 10.1261/rna.268307
Vogt, 2006, Coordination environment of a site-bound metal ion in the hammerhead ribozyme determined by 15N and 2H ESEEM spectroscopy, J. Am. Chem. Soc., 128, 16764, 10.1021/ja057035p
Burke, 2005, Low-magnesium, trans-cleavage activity by type III, tertiary stabilized hammerhead ribozymes with stem 1 discontinuities, BMC Biochem., 6, 14, 10.1186/1471-2091-6-14
Persson, 2002, Selection of hammerhead ribozyme variants with low Mg2+ requirement: importance of stem-loop II, Chembiochem, 3, 1066, 10.1002/1439-7633(20021104)3:11<1066::AID-CBIC1066>3.0.CO;2-G
Roychowdhury-Saha, 2006, Extraordinary rates of transition metal ion-mediated ribozyme catalysis, RNA, 12, 1846, 10.1261/rna.128906
Fedoruk-Wyszomirska, 2009, Highly active low magnesium hammerhead ribozyme, J. Biochem., 145, 451, 10.1093/jb/mvn182
Cornell, 1995, A second generation force field for the simulation of proteins, nucleic acids and organic molecules, J. Am. Chem. Soc., 117, 5179, 10.1021/ja00124a002
Case, 2008
Case, 2002
Pearlman, 1995, AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structure and energetic properties of molecules, Comput. Phys. Commun., 91, 1, 10.1016/0010-4655(95)00041-D
Burgin, 1996, Chemically modified hammerhead ribozymes with improved catalytic rates, Biochemistry, 35, 14090, 10.1021/bi961264u
Baidya, 1997, A kinetic and thermodynamic analysis of cleavage site mutations in the hammerhead ribozyme, Biochemistry, 36, 1108, 10.1021/bi962165j
Nelson, 2008, Minimal and extended hammerheads utilize a similar dynamic reaction mechanism for catalysis, RNA, 14, 43, 10.1261/rna.717908
Soukup, 1999, Relationship between internucleotide linkage geometry and the stability of RNA, RNA, 5, 1308, 10.1017/S1355838299990891
Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Crystallogr. D, 60, 2126, 10.1107/S0907444904019158
Fürtig, 2008, NMR-spectroscopic characterization of phosphodiester bond cleavage catalyzed by the minimal hammerhead ribozyme, RNA Biol., 5, 41, 10.4161/rna.5.1.5704
Uhlenbeck, 1987, A small catalytic oligoribonucleotide, Nature, 328, 596, 10.1038/328596a0
Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Grapics, 14, 33, 10.1016/0263-7855(96)00018-5
