Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques
Tóm tắt
Từ khóa
Tài liệu tham khảo
Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiol Soc N Am. 2018;286(3):800–9.
Breast Cancer: Statistics, Approved by the Cancer.Net Editorial Board, 04/2017. [Online]. Available: http://www.cancer.net/cancer-types/breast-cancer/statistics. Accessed 26 Aug 2018.
Mori M, Akashi-Tanaka S, Suzuki S, Daniels MI, Watanabe C, Hirose M, Nakamura S. Diagnostic accuracy of contrast-enhanced spectral mammography in comparison to conventional full-field digital mammography in a population of women with dense breasts. Springer. 2016;24(1):104–10.
Kurihara H, Shimizu C, Miyakita Y, Yoshida M, Hamada A, Kanayama Y, Tamura K. Molecular imaging using PET for breast cancer. Springer. 2015;23(1):24–32.
Azar AT, El-Said SA. Probabilistic neural network for breast cancer classification. Neural Comput Appl. 2013;23(6):1737–51.
Nagashima T, Suzuki M, Yagata H, Hashimoto H, Shishikura T, Imanaka N, Miyazaki M. Dynamic-enhanced MRI predicts metastatic potential of invasive ductal breast cancer. Springer. 2002;9(3):226–30.
Park CS, Kim SH, Jung NY, Choi JJ, Kang BJ, Jung HS. Interobserver variability of ultrasound elastography and the ultrasound BI-RADS lexicon of breast lesions. Springer. 2013;22(2):153–60.
Ayon SI, Islam MM, Hossain MR. Coronary artery heart disease prediction: a comparative study of computational intelligence techniques. IETE J Res. 2020;. https://doi.org/10.1080/03772063.2020.1713916.
Muhammad LJ, Islam MM, Usman SS, Ayon SI. Predictive data mining models for novel coronavirus (COVID-19) infected patients’ recovery. SN Comput Sci. 2020;1(4):206.
Islam MM, Iqbal H, Haque MR, Hasan MK. Prediction of breast cancer using support vector machine and K-Nearest neighbors. In: Proc. IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Dhaka, 2017, pp. 226–229.
Haque MR, Islam MM, Iqbal H, Reza MS, Hasan MK. Performance evaluation of random forests and artificial neural networks for the classification of liver disorder. In: Proc. International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Rajshahi, 2018, pp. 1–5.
Ayon SI, Islam MM. Diabetes prediction: a deep learning approach. Int J Inf Eng Electron Bus (IJIEEB). 2019;11(2):21–7.
Islam MZ, Islam MM, Asraf A. A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images, 2020. pp. 1–20.
Hasan MK, Islam MM, Hashem MMA. Mathematical model development to detect breast cancer using multigene genetic programming. In: 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), pp. 574–579, 2016.
Sakri SB, Rashid NBA, Zain ZM. Particle swarm optimization feature selection for breast cancer recurrence prediction. IEEE Access. 2018;6:29637–47.
Juneja K, Rana C. An improved weighted decision tree approach for breast cancer prediction. In: International Journal of Information Technology, 2018.
Yue W, et al. Machine learning with applications in breast cancer diagnosis and prognosis. Designs. 2018;2(2):13.
Banu AB, Subramanian PT. Comparison of Bayes classifiers for breast cancer classification. Asian Pac J Cancer Prev (APJCP). 2018;19(10):2917–20.
Chaurasia V, Pal S, Tiwari B. Prediction of benign and malignant breast cancer using data mining techniques. J Algorithms Comput Technol. 2018;12(2):119–26.
Azar AT, El-Metwally SM. Decision tree classifiers for automated medical diagnosis. Neural Comput Appl. 2012;23(7–8):2387–403.
Senapati MR, Mohanty AK, Dash S, Dash PK. Local linear wavelet neural network for breast cancer recognition. Neural Comput Appl. 2013;22(1):125–31.
Senapati MR, Panda G, Dash PK. Hybrid approach using KPSO and RLS for RBFNN design for breast cancer detection. Neural Comput Appl. 2014;24(3–4):745–53.
Hasan MK, Islam MM, Hashem MMA (2016) Mathematical model development to detect breast cancer using multigene genetic programming. In: Proc. 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, 2016, pp. 574–579.
Azar AT, El-Said SA. Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput Appl. 2013;24(5):1163–77.
Ferreira P, Dutra I, Salvini R, Burnside E. Interpretable models to predict Breast Cancer. In: Proc. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, 2016, pp. 1507–1511.
Jhajharia S, Verma S, Kumar R. A cross-platform evaluation of various decision tree algorithms for prognostic analysis of breast cancer data. In: Proc. International Conference on Inventive Computation Technologies (ICICT), Coimbatore, 2016, pp. 1–7.
Islam MM, Rahaman A, Islam MR. Development of smart healthcare monitoring system in IoT environment. SN Comput Sci. 2020;1(3):185.
Rahaman A, Islam M, Islam M, Sadi M, Nooruddin S. Developing IoT based smart health monitoring systems: a review. Rev d’Intell Artif. 2019;33(6):435–40.
Breast Cancer Wisconsin (Original) Data Set, [Online]. https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data. Accessed 25 Aug 2018.
James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. 1st ed. New York: Springer; 2013.
Guido S, Mller AC. Introduction to machine learning with python. Sebastopol: O’Reilly Media Inc.; 2016.
Dwivedi AK. Performance evaluation of different machine learning techniques for prediction of heart disease. Neural Comput Appl. 2016;29(10):685–93.
Ratner B. Statistical and machine-learning data mining: techniques for better predictive modeling and analysis of big data. Oxford: Chapman and Hall/CRC; 2017.
Dong L, Wesseloo J, Potvin Y, Li X. Discrimination of mine seismic events and blasts using the fisher classifier, naive bayesian classifier and logistic regression. Rock Mech Rock Eng. 2015;49(1):183–211.
Hosmer DW Jr, Lemeshow S. Applied logistic regression. New York: Wiley; 2004.
Schumacher M, Roner R, Vach W. Neural networks and logistic regression: part I. Comput Stat Data Anal. 1996;21(6):661–82.
Vach W, Roner R, Schumacher M. Neural networks and logistic regression: part II. Comput Stat Data Anal. 1996;21(6):683–701.
Hajmeer M, Basheer I. Comparison of logistic regression and neural network-based classifiers for bacterial growth. Food Microbiol. 2003;20(1):43–55.
Xu Y, Zhu Q, Wang J. Breast cancer diagnosis based on a kernel orthogonal transform. Neural Comput Appl. 2012;21(8):1865–70.
Latchoumi TP, Parthiban L. Abnormality detection using weighed particle swarm optimization and smooth support vector machine. Biomed Res. 2017;28:4749–51.