Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis
Tài liệu tham khảo
Agnolucci, 2009, Volatility in crude oil futures: a comparison of the predictive ability of GARCH and implied volatility models, Energy Econ., 31, 316, 10.1016/j.eneco.2008.11.001
Arouri, 2012, Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models, Energy Econ., 34, 283, 10.1016/j.eneco.2011.10.015
Artzner, 1999, Coherent measures of risk, Math. Financ., 9, 203, 10.1111/1467-9965.00068
Baillie, 2009, Modeling long memory and structural breaks in conditional variances: an adaptive FIGARCH approach, J. Econ. Dyn. Control., 33, 1577, 10.1016/j.jedc.2009.02.009
Baillie, 1996, Fractionally integrated generalized autoregressive conditional heteroskedasticity, J. Econ., 74, 3, 10.1016/S0304-4076(95)01749-6
Baillie, 2007, Long memory models for daily and high frequency commodity futures returns, J. Futur. Mark., 27, 643, 10.1002/fut.20267
Bollerslev, 1986, Generalized autoregressive conditional heteroscedasticity, J. Econ., 31, 307, 10.1016/0304-4076(86)90063-1
Bollerslev, 1996, Modeling and pricing long memory in stock market volatility., J. Econ., 73, 151, 10.1016/0304-4076(95)01736-4
Breidt, 1998, The detection and estimation of long memory in stochastic volatility, J. Econ., 83, 325, 10.1016/S0304-4076(97)00072-9
Cai, 1994, A Markov model of switching-regime ARCH, J. Bus. Econ. Stat., 12, 309
Charles, 2014, Volatility persistence in crude oil markets, Energy Policy, Elsevier, vol. 65(C), 729, 10.1016/j.enpol.2013.10.042
Charfeddine, 2009, New evidence on the nonstationary of the US and Canadian inflation series, ICFAI, J. Appl. Financ., 156
Charfeddine, 2011, A varieties of spurious long memory model, Int. J. Bus. Soc. Sci., 23, 52
Charfeddine, 2014, True of spurious long memory: further evidence from the futures energy markets, Energy Policy, 71, 76, 10.1016/j.enpol.2014.04.027
Charfeddine, 2013, The Tunisian Stock Market Index volatility: long memory vs switching regime, Emerg. Mark. Rev., 16, 170, 10.1016/j.ememar.2013.05.003
Charfeddine, 2010, Nonlinear models and the forward discount anomaly: an empirical investigation?, Int. J. Econ. Financ. Can. Cent. Sci. Educ., 21, 81
Charfeddine, 2011, Which is the best for the US inflation time series: a structural change model or a long memory process?, IUP J. Appl. Econ., 101, 5
Charfeddine, 2012, Breaks or long memory behaviour: an empirical investigation, Phys. A Stat. Mech. Appl., 391, 5712, 10.1016/j.physa.2012.06.036
Charfeddine, 2016, Time varying market efficiency of the GCC stock markets, Physica A, 444, 487, 10.1016/j.physa.2015.09.063
Chen, 1990, Random level-shift time series models, ARIMA approximations, and level-shift detection, J. Bus. Econ. Stat., 8, 83
Cheong, 2009, Modelling and forecasting crude oil markets using ARCH-type models, Energy Policy, 37, 2346, 10.1016/j.enpol.2009.02.026
Chkili, 2014, Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory, Energy Econ., 41, 1, 10.1016/j.eneco.2013.10.011
Cunado, 2010, Persistence in some energy futures markets, J. Futur. Mark., 30, 490
Diebold, 2001, Long memory and regime switching, J. Econ., 105, 131, 10.1016/S0304-4076(01)00073-2
Elder, 2008, Long memory in energy futures prices, Rev. Financ. Econ., 17, 146, 10.1016/j.rfe.2006.10.002
Engle, 1982, Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation, Econometrica, 50, 987, 10.2307/1912773
Engle, 1992, Implied ARCH models from option prices., J. Econ., 52, 5, 10.1016/0304-4076(92)90074-2
Engle, 1999, Stochastic permanent breaks, Rev. Econ. Stat., 81, 553, 10.1162/003465399558382
Engle, 2002
Fernandez, 2010, Commodity futures and market efficiency: a fractional integrated approach, Resour. Policy, 35, 276, 10.1016/j.resourpol.2010.07.003
Gallant, 1984, The Fourier flexible form American, J. Agric. Econ., 66, 204, 10.2307/1241043
Geweke, 1983, The estimation and application of long memory time series models, J. Time Ser. Anal., 4, 221, 10.1111/j.1467-9892.1983.tb00371.x
Giot, 2003, Markets risk in commodity markets: a VaR approach, Energy Econ., 25, 435, 10.1016/S0140-9883(03)00052-5
Giriatis, 2003, Rescaled variance and related tests for long memory in volatility and levels., J. Econ., 112, 265, 10.1016/S0304-4076(02)00197-5
Gourieroux, 2001, Memory and infrequent breaks, Econ. Lett., 70, 29, 10.1016/S0165-1765(00)00346-3
Granger, 2004, Occasional structural breaks and long memory with application to the S&P500 absolute stock returns, J. Empir. Financ., 11, 399, 10.1016/j.jempfin.2003.03.001
Granger, 1980, An introduction to long memory time series and fractional differencing, J. Time Ser. Anal., 1, 15, 10.1111/j.1467-9892.1980.tb00297.x
Granger, 1999, A simple nonlinear time series model with misleading linearproperties, Econ. Lett., 62, 161, 10.1016/S0165-1765(98)00228-6
Gray, 1996, Modeling the conditional distribution of interest rates as a regime-switching process, J. Financ. Econ., 42, 27, 10.1016/0304-405X(96)00875-6
Hamilton, 1989, A new approach to the economic analysis of non stationarity time series and the business cycle, Econometrica, 57, 357, 10.2307/1912559
Hamilton, 2009, Causes and consequences of the oil shock of 2007–08, 215
Hamilton, 2013, Historical oil shocks, 239
Hamilton, 1994, Autoregressive conditional heteroscedasticity and changes in regimes, J. Econ., 64, 307, 10.1016/0304-4076(94)90067-1
Haas, 2004, A New Approach to Markov-Switching GARCH Models, J. Financ. Econ., 2, 493
Hosking, 1981, Fractional differencing, Biometrica, 68, 165, 10.1093/biomet/68.1.165
Jensen, 1999, An approximate wavelet MLE of short- and long-memory parameters, Stud. Nonlinear Dyn. Econ., 3, 239
Kang, 2013, Modeling and forecasting the volatility of petroleum futures prices, Energy Econ., 36, 354, 10.1016/j.eneco.2012.09.010
Kang, 2009, Forecasting volatility of crude oil markets, Energy Econ., 31, 119, 10.1016/j.eneco.2008.09.006
Khediri, 2015, Evolving efficiency of spot and futures energy markets: a rolling sample approach, J. Behav. Exp. Financ., 6, 67, 10.1016/j.jbef.2015.03.006
Kim, 1999
Klassen, 2002, Improving GARCH volatility forecasts, Empir. Econ., 27, 363, 10.1007/s001810100100
Kupiec, 1995, Technique for verifying the accuracy of risk measurement models, J. Deriv., 2, 173
Lamoureux, 1990, Persistence in variance, structural change and the GARCH model, J. Bus. Econ. Stat., 8, 225
Lo, 1991, Long term memory in stock market prices, Econometrica, 59, 1279, 10.2307/2938368
Marcucci, 2005, Forecasting stock market volatility with regime-switching GARCH models, Stud. Nonlinear Dyn. Econ., 94, 1
Mrabet, 2014, Co-movement on stock market volatility: the BRIC and USA economies
Narayan, 2011, Are shocks to commodity prices persistent?, Appl. Energy, 88, 409, 10.1016/j.apenergy.2010.07.032
Narayan, 2015, A unit root model for trending time-series energy variables, Energy Econ., 50, 391, 10.1016/j.eneco.2014.11.021
Narayan, 2013, New evidence on oil price and stock returns, J. Bank. Financ., 35, 3253, 10.1016/j.jbankfin.2011.05.010
Narayan, 2013, An analysis of commodity markets: what gain for investors?, J. Bank. Financ., 37, 3878, 10.1016/j.jbankfin.2013.07.009
Narayan, 2015, Do momentum-based trading strategies work in the commodity futures markets?, J. Futur. Mark., 35, 868, 10.1002/fut.21685
Narayan, 2015, Does data frequency matter for the impact of forward premium on spot exchange rate?, Int. Rev. Financ. Anal., 39, 45, 10.1016/j.irfa.2015.01.011
Nelson, 1991, Conditional heteroskedasticity in asset returns: a new approach, Econometrica, 59, 347, 10.2307/2938260
Ozdemir, 2013, Persistence in crude oil spot and futures prices, Energy, 59, 29, 10.1016/j.energy.2013.06.008
Peng, 1994, Mosaic organization of DNA nucleotides, Phys. Rev. E, 49, 1685, 10.1103/PhysRevE.49.1685
Phan, 2015, Oil price and stock returns of consumers and producers of crude oil, J. Int. Financ. Mark. Inst. Money, 34, 245, 10.1016/j.intfin.2014.11.010
Phan, 2015, Stock return forecasting: some new evidence, Int. Rev. Financ. Anal., 40, 38, 10.1016/j.irfa.2015.05.002
Robinson, 1998, Long and short memory conditional heteroscedasticity in estimating the memory parameter of levels
Schwert, 1990, Stock volatility and the crash of 87, Rev. Financ. Stud., 3, 77, 10.1093/rfs/3.1.77
Shimotsu, 2010, Exact local whittle estimation of fractional integration with unknown mean and time trend, Econ. Theory, 26, 501, 10.1017/S0266466609100075
Shimotsu, 2005, Exact local Whittle estimation of fractional integration, Ann. Stat., 334, 1890, 10.1214/009053605000000309
Susmel, 2000, Switching volatility in international equity markets, Int. J. Financ. Econ., 5, 265, 10.1002/1099-1158(200010)5:4<265::AID-IJFE132>3.0.CO;2-H
Tang, 2006, Long memory in stock index futures markets: a value at risk approach, Physica A, 366, 437, 10.1016/j.physa.2005.10.017
Wang, 2013, Oil Price Effects on Personal Consumption Expenditures, Energy Econ., 36, 198, 10.1016/j.eneco.2012.08.007
Wang, 2010, Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?, Energy Econ., 34, 2167, 10.1016/j.eneco.2012.03.010
Wang, 2012, Long memory in energy futures markets: further evidence, Resour. Policy, 37, 261, 10.1016/j.resourpol.2012.05.002
Wang, 2011, Can GARCH-class models capture long memory in WTI crude oil markets?, Econ. Model., 28, 921, 10.1016/j.econmod.2010.11.002
Wei, 2010, Forecasting crude oil market volatility: further evidence using GARCH-class models, Energy Econ., 32, 1477, 10.1016/j.eneco.2010.07.009