Breaking the sodium solubility limit for extraordinary thermoelectric performance in p-type PbTe

Energy and Environmental Science - Tập 15 Số 9 - Trang 3958-3967
Yingcai Zhu1, Lei Hu2, Shaoping Zhan1, Toshiaki Ina3, Xiang Gao4, Tao Hong1, Li‐Dong Zhao5,1
1School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University. Xi’an 710049, China
3Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
4Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
5Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province (2021E10022), Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China

Tóm tắt

Sodium solubility is largely enhanced with the introduction of AgInSe2 in Pb1−yNayTe matrixes, which facilitates band convergence, leading to an exceptional figure-of-merit ZT of ∼2.5 at 773 K in p-type PbTe.

Từ khóa


Tài liệu tham khảo

Poudel, 2008, Science, 320, 634, 10.1126/science.1156446

Biswas, 2012, Nature, 489, 414, 10.1038/nature11439

Zhao, 2012, J. Am. Chem. Soc., 134, 7902, 10.1021/ja301772w

Zeier, 2013, J. Am. Chem. Soc., 135, 726, 10.1021/ja308627v

Qiu, 2019, J. Mater. Chem. A, 7, 26393, 10.1039/C9TA10963C

Roychowdhury, 2021, Science, 371, 722, 10.1126/science.abb3517

Sarkar, 2020, J. Am. Chem. Soc., 142, 12237, 10.1021/jacs.0c03696

Banik, 2019, Energy Environ. Sci., 12, 589, 10.1039/C8EE03162B

Zhao, 2016, Science, 351, 141, 10.1126/science.aad3749

He, 2019, Science, 365, 1418, 10.1126/science.aax5123

Liu, 2012, Phys. Rev. Lett., 108, 166601, 10.1103/PhysRevLett.108.166601

Pei, 2011, Nature, 473, 66, 10.1038/nature09996

Qin, 2021, Science, 373, 556, 10.1126/science.abi8668

Chang, 2018, Science, 360, 778, 10.1126/science.aaq1479

Jin, 2022, Adv. Energy Mater., 12, 2103779, 10.1002/aenm.202103779

Wu, 2014, Adv. Funct. Mater., 24, 7763, 10.1002/adfm.201402211

Chang, 2019, Adv. Energy Mater., 9, 1901334, 10.1002/aenm.201901334

Snyder, 2008, Nat. Mater., 7, 105, 10.1038/nmat2090

Mukhopadhyay, 2018, Science, 360, 1455, 10.1126/science.aar8072

Hu, 2021, Nat. Commun., 12, 4793, 10.1038/s41467-021-25119-z

Zhao, 2014, Nature, 508, 373, 10.1038/nature13184

Zhang, 2017, Materials, 10, 198, 10.3390/ma10020198

He, 2018, J. Mater. Chem. A, 6, 10048, 10.1039/C8TA03150A

Pei, 2013, Energy Environ. Sci., 6, 1750, 10.1039/c3ee40879e

Liu, 2019, Adv. Funct. Mater., 29, 1806558, 10.1002/adfm.201806558

Chang, 2018, Chem. Mater., 30, 7355, 10.1021/acs.chemmater.8b03732

Zheng, 2021, Chem. Soc. Rev., 50, 9022, 10.1039/D1CS00347J

Hsu, 2004, Science, 303, 818, 10.1126/science.1092963

Xiao, 2019, Adv. Energy Mater., 9, 1900414, 10.1002/aenm.201900414

Abdellaoui, 2021, Adv. Funct. Mater., 31, 2101214, 10.1002/adfm.202101214

He, 2012, Adv. Mater., 24, 4440, 10.1002/adma.201201565

Wang, 2021, Energy Environ. Sci., 14, 451, 10.1039/D0EE03459B

Qin, 2022, Mater. Lab., 1, 220004

Anand, 2022, Chem. Mater., 34, 1638, 10.1021/acs.chemmater.1c03715

Ohno, 2018, Joule, 2, 141, 10.1016/j.joule.2017.11.005

Ohno, 2017, Adv. Funct. Mater., 27, 1606361, 10.1002/adfm.201606361

Jood, 2020, J. Am. Chem. Soc., 142, 15464, 10.1021/jacs.0c07067

Xiao, 2020, J. Am. Chem. Soc., 142, 4051, 10.1021/jacs.0c00306

Qin, 2021, Adv. Funct. Mater., 31, 2102185, 10.1002/adfm.202102185

Tan, 2019, J. Am. Chem. Soc., 141, 4480, 10.1021/jacs.9b00967

Wang, 2011, Adv. Mater., 23, 1366, 10.1002/adma.201004200

Jiang, 2021, Science, 371, 830, 10.1126/science.abe1292

Jiang, 2021, Nat. Commun., 12, 3234, 10.1038/s41467-021-23569-z

Qin, 2018, Rare Met., 37, 343, 10.1007/s12598-017-0991-9

Qian, 2019, Energy Environ. Sci., 12, 1969, 10.1039/C8EE03386B

Xiao, 2018, J. Am. Chem. Soc., 140, 13097, 10.1021/jacs.8b09029

Zhu, 2022, Nat. Commun., 13, 4179, 10.1038/s41467-022-31939-4

Zhao, 2013, Energy Environ. Sci., 6, 3346, 10.1039/c3ee42187b

Pei, 2016, Adv. Energy Mater., 7, 1601450, 10.1002/aenm.201601450

Heremans, 2008, Science, 321, 554, 10.1126/science.1159725

Heremans, 2012, Energy Environ. Sci., 5, 5510, 10.1039/C1EE02612G

Delaire, 2011, Nat. Mater., 10, 614, 10.1038/nmat3035

Zhao, 2014, Energy Environ. Sci., 7, 251, 10.1039/C3EE43099E

Chen, 2017, Adv. Mater., 29, 1606768, 10.1002/adma.201606768

Wu, 2014, Nat. Commun., 5, 4515, 10.1038/ncomms5515

Tan, 2016, Nat. Commun., 7, 12167, 10.1038/ncomms12167

Qiu, 2018, Adv. Sci., 5, 1700727, 10.1002/advs.201700727

Zhu, 2019, Chem. Mater., 31, 8182, 10.1021/acs.chemmater.9b03011

Zhu, 2021, Mater. Today Phys., 19, 100428, 10.1016/j.mtphys.2021.100428

Wang, 2014, Proc. Natl. Acad. Sci. U. S. A., 111, 10949, 10.1073/pnas.1403601111

Jang, 2021, Adv. Sci., 8, e2100895, 10.1002/advs.202100895

Korkosz, 2014, J. Am. Chem. Soc., 136, 3225, 10.1021/ja4121583

Kuo, 2018, Energy Environ. Sci., 11, 429, 10.1039/C7EE03326E

He, 2013, J. Am. Chem. Soc., 135, 4624, 10.1021/ja312562d

Yamini, 2013, J. Mater. Chem. A, 1, 8725, 10.1039/c3ta11654a

Doak, 2015, J. Mater. Chem. C, 3, 10630, 10.1039/C5TC02252E

Goyal, 2017, npj Comput. Mater., 3, 42, 10.1038/s41524-017-0047-6

Chasapis, 2015, Phys. Rev. B, 91, 085207, 10.1103/PhysRevB.91.085207

Snyder, 2020, Adv. Mater., 32, e2001537, 10.1002/adma.202001537

S. D.Kang and G. J.Snyder , 2017, arXiv:1710.06896 [cond-mat.mtrl-sci]