Breaking W/O emulsion with electrospun hierarchically porous PLA fibers

Emergent Materials - Tập 5 - Trang 1507-1516 - 2021
Laura Ribba1,2, Jonathan Cimadoro2,3, Silvia Goyanes2,3
1Dirección de Materiales Avanzados, Áreas del Conocimiento, INTI, CONICET, Buenos Aires, Argentina
2Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
3Instituto de Física de Buenos Aires (IFIBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina

Tóm tắt

One of the most challenging aspects in fuel industry is the content of emulsified water in crude oil and derived fuels. Although a common technique to separate emulsions is the use of chemicals, the application of membranes is imposed as a clean technology. However, there are still several scientific and technological challenges to overcome in order to implement these methodologies efficiently. In this work, we propose the use of a polymeric porous membrane to de-emulsify water in diesel systems, reaching the solubility limit, and demonstrate that its mechanism of action is not based purely on its hydrophobic character, but on the energetic affinity between involved materials. In this context, hierarchically porous polylactic acid mats were fabricated by electrospinning. Three different morphologies were obtained and explained in terms of ambient conditions and employed solvents. The mat formed by fibers with deep pores was employed to selectively and effectively separate water from water-in-oil (W/O) emulsions, reducing its original concentration from 1200 ppm to values in the order of the water solubility limit in diesel (96 ppm). This result was explained in terms of the changes suffered by the surface energies involved in the process, as it progresses. The development presented in this work could help solve the serious problems generated by water presence in diesel fuel as well as water accumulation in fuel tanks.

Tài liệu tham khảo

R. Zolfaghari, A. Fakhru’l-Razi, L.C. Abdullah, S.S. Elnashaie, A. Pendashteh, Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep. Purif. Technol. 170, 377–407 (2016). https://doi.org/10.1016/j.seppur.2016.06.026 M.A. Saad, M. Kamil, N.H. Abdurahman, R.M. Yunus, O.I. Awad, An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions. Processes 7, 470 (2019). https://doi.org/10.3390/pr7070470 B. Bolto, J. Zhang, X. Wu, Z. Xie, A Review on Current Development of Membranes for Oil Removal from Wastewaters. Membranes 10, 65 (2020). https://doi.org/10.3390/membranes10040065 H. Lu, Y.Q. Liu, J.B. Cai, X. Xu, L.S. Xie, Q. Yang, Y. Li, K. Zhu, Treatment of offshore oily produced water: Research and application of a novel fibrous coalescence technique. J. Petrol Sci. Eng. 178, 602–608 (2019). https://doi.org/10.1016/j.petrol.2019.03.025 L.G. Ribba, J.D. Cimadoro, N.B. D’Accorso, S.N. Goyanes, Removal of pollutants using electrospun nanofiber membranes, in Industrial Applications of Renewable Biomass Products. ed. by S.N. Goyanes, N.B. D’Accorso (London, Springer Nature, 2017), pp. 301–324. https://doi.org/10.1007/978-3-319-61288-1_12 B. Aygün, H. Özdemir, M.F. Öksüzömer, Structural, morphological and conductivity properties of samaria doped ceria (SmxCe1-xO2-x/2) electrolytes synthesized by electrospinning method. Mater. Chem. Phys. 232, 82–87 (2019). https://doi.org/10.1016/j.matchemphys.2019.04.067 L. Ribba, L. Tamayo, M. Flores, A. Riveros, M.J. Kogan, E. Cerda, S. Goyanes, Asymmetric biphasic hydrophobic/hydrophilic poly (lactic acid)–polyvinyl alcohol meshes with moisture control and noncytotoxic effects for wound dressing applications. J. Appl. Polym. Sci. 2019(136), 47369 (2019). https://doi.org/10.1002/app.47369 D. Ponnamma, O. Aljarod, H. Parangusan, M.A.A. Al-Maadeed, Electrospun nanofibers of PVDF-HFP composites containing magnetic nickel ferrite for energy harvesting application. Mater. Chem. Phys. 239, 122257 (2020). https://doi.org/10.1016/j.matchemphys.2019.122257 J. Cimadoro, L. Ribba, S. Goyanes, E. Cerda, Wetting a superomniphobic porous system. Soft Matter. 15, 8621–8626 (2019). https://doi.org/10.1039/C9SM01091B A. Mujica-Garcia, I. Navarro-Baena, J.M. Kenny, L. Peponi, Influence of the processing parameters on the electrospinning of biopolymeric fibers. J. Renew. Mater. 2, 23–34 (2014). https://doi.org/10.7569/JRM.2013.634130 C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, J.F. Rabolt, Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37, 573–578 (2004). https://doi.org/10.1021/ma0351975 F. Zareei Pour, M.M. Sabzehmeidani, H. Karimi, V. Madadi Avargani, M. Ghaedi, Superhydrophobic–superoleophilic electrospun nanofibrous membrane modified by the chemical vapor deposition of dimethyl dichlorosilane for efficient oil–water separation. J. Appl. Polym. Sci. 136, 47621 (2019). https://doi.org/10.1002/app.47638 F. Trupp, N. Torasso, D. Grondona, G.H. Rubiolo, S. Goyanes, Hierarchical selective membranes combining carbonaceous nanoparticles and commercial permeable substrates for oil/water separation. Sep. Purif. Technol. 234, 116053 (2020). https://doi.org/10.1016/j.seppur.2019.116053 P.A. Ulloa, J. Vidal, C. Lopéz de Dicastillo, F. Rodriguez, A. Guarda, R.M.S. Cruz, M.J. Galotto, Development of poly (lactic acid) films with propolis as a source of active compounds: Biodegradability, physical, and functional properties. J. Appl. Polym. Sci. 136, 47090 (2019). https://doi.org/10.1002/app.47090 L. Ribba, J. Cimadoro, S. Goyanes, Ecofriendly e-nose based in PLA and only 0.3 wt% of CNTs. J. Renew. Mater. 7, 355–363 (2019). https://doi.org/10.32604/jrm.2019.04083 T.C. Basso, G. Perotto, C. Musacchio, A. Merlone, A. Athanassiou, D. Tordella, Evaluation of Mater Bi and Polylactic Acid as materials for biodegradable innovative mini-radiosondes to track small scale fluctuations within clouds. Mater. Chem. Phys. 253, 123411 (2020). https://doi.org/10.1016/j.matchemphys.2020.123411 P. Zhang, R. Tian, R. Lv, B. Na, Q. Liu, Water-permeable polylactide blend membranes for hydrophilicity-based separation. Chem. Eng. J. 269, 180–185 (2015). https://doi.org/10.1016/j.cej.2015.01.111 X. Dai, Y. Cao, X. Shi, X. Wang, The PLA/ZIF-8 Nanocomposite Membranes: The Diameter and Surface Roughness Adjustment by ZIF-8 Nanoparticles, High Wettability, Improved Mechanical Property, and Efficient Oil/Water Separation. Adv. Mater. Interfaces 3, 1600725 (2016). https://doi.org/10.1002/admi.201600725 J. Gu, P. Xiao, P. Chen, L. Zhang, H. Wang, L. Dai, L. Song, Y. Huang, J. Zhang, T. Chen, Functionalization of biodegradable PLA nonwoven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation. ACS Appl. Mater. Inter. 9, 5968–5973 (2017). https://doi.org/10.1021/acsami.6b13547 J. Zhao, W. Wang, C. Ye, Y. Li, J. You, Gravity-driven ultrafast separation of water-in-oil emulsion by hierarchically porous electrospun Poly (L-lactide) fabrics. J. Membr. Sci. 563, 762–767 (2018). https://doi.org/10.1016/j.memsci.2018.06.053 N. Yaacob, P.S. Goh, A.F. Ismail, N.A.M. Nazri, B.C. Ng, M.N.Z. Abidin, L.T. Yogarathinam, ZrO2–TiO2 Incorporated PVDF Dual-Layer Hollow Fiber Membrane for Oily Wastewater Treatment: Effect of Air Gap. Membranes 10, 124 (2020). https://doi.org/10.3390/membranes10060124 C. Huang, N.L. Thomas, Fabricating porous poly (lactic acid) fibres via electrospinning. Eur. Polym. J. 99, 464–476 (2018). https://doi.org/10.1016/j.eurpolymj.2017.12.025 J.L. Abboud, R. Notari, Critical compilation of scales of solvent parameters. Part I. Pure, non-hydrogen bond donor solvents. Pur. Appl. Chem. 71, 645–718 (1999). https://doi.org/10.1351/pac199971040645 K. Adamska, A. Voelkel, A. Berlińska, The solubility parameter for biomedical polymers—Application of inverse gas chromatography. J. Pharmaceut. Biomed. 127, 202–206 (2016). https://doi.org/10.1016/j.jpba.2016.04.014 J. Cimadoro, S. Goyanes, Reversible swelling as a strategy in the development of smart membranes from electrospun polyvinyl alcohol nanofiber mats. J. Polym. Sci. 58, 737–746 (2020). https://doi.org/10.1002/pol.20190156 J. Hermia, Constant pressure blocking filtration law: Application to power law non-Newtonian fluids. Trans. Inst. Chem. Eng. 60, 183–187 (1982) J. Cimadoro, L. Ribba, S. Ledesma, S. Goyanes, Electrospun Mats: From white to transparent with a drop. Macromol. Mater. Eng. 303, 1800237 (2018). https://doi.org/10.1002/mame.201800237 P.B.L. Fregolente, W.M. Wolf Maciel, L.S. Oliveira, Removal of water content from biodiesel and diesel fuel using hydrogel adsorbents. Braz. J. Chem. Eng. 32, 895–901 (2015). https://doi.org/10.1590/0104-6632.20150324s20140142 L.A. Girifalco, R.J. Good, A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J. Phys. Chem. 61, 904–909 (1957). https://doi.org/10.1021/j150553a013