Breakdown of the Goldreich–Julian relation in a neutron star

Astronomy Letters - Tập 42 - Trang 745-751 - 2016
D. N. Sob’yanin1
1Tamm Division of Theoretical Physics, Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

The electromagnetic field in a magnetized neutron star and the underlying volume charges and currents are found. A general case of a rigidly rotating neutron star with infinite conductivity, arbitrary distribution of the internal magnetic field, arbitrarily changing angular velocity, and arbitrary surface velocity less than the velocity of light is considered. Quaternions are used to describe rotation and determine the magnetic field. It is shown that the charge density is not equal to and can exceed significantly the common Goldreich–Julian density. Moreover, corrections to the magnetic field due to stellar rotation are zero. For a rotating neutron star, twisting magnetic field lines causes charge accumulation and current flows. This fact shows a possible link between changing internal magnetic field topology and observed activity of neutron stars.

Tài liệu tham khảo

H. Alfvén and G. G. Fälthammar, Cosmical Electrodynamics (Clarendon, Oxford, 1963; Mir, Moscow, 1967). V. S. Beskin, Phys. Usp. 42, 1071 (1999). J. Braithwaite, Mon. Not. R. Astron. Soc. 397, 763 (2009). J. Braithwaite and Å. Nordlund, Astron. Astrophys. 450, 1077 (2006). J. Braithwaite and H. C. Spruit, Nature 431, 819 (2004). V. N. Branets and I. P. Shmyglevskii, The Use of Quaternions in Problems of Rigid Body Orientation (Nauka, Moscow, 1973) [in Russian]. Yu. M. Bruk, Astrophysics 11, 62 (1975). Yu. M. Bruk and K. I. Kugel’, Astrophysics 12, 217 (1976a). Ju. M. Bruk and K. I. Kugel, Astrophys. Space Sci. 39, 243 (1976b). Yu. M. Bruk and K. I. Kugel’, Sov. Astron. 21, 58 (1977). S. Burke-Spolaor and M. Bailes, Mon. Not. R. Astron. Soc. 402, 855 (2010). P. A. Caraveo, Ann. Rev. 52, 211 (2014). R. Ciolfi and L. Rezzolla, Mon. Not. R. Astron. Soc. 435, L43 (2013). R. Ciolfi, S. K. Lander, G.M. Manca, and L. Rezzolla, Astrophys. J. 736, L6 (2011). C. Cutler, Phys. Rev. D 66, 084025 (2002). A. T. Deibel, A. W. Steiner, and E. F. Brown, Phys. Rev. C 90, 025802 (2014). R. C. Duncan, Astrophys. J. 498, L45 (1998). A. Esamdin, D. Abdurixit, R. N. Manchester, and H. B. Niu, Astrophys. J. 759, L3 (2012). C. M. Espinoza, A. G. Lyne, B. W. Stappers, and M. Kramer, Mon. Not. R. Astron. Soc. 414, 1679 (2011). F. Garciá and I. F. Ranea-Sandoval, Mon. Not. R. Astron. Soc. 449, L73 (2015). P. R. Girard, Quaternions, Clifford Algebras, and Relativistic Physics (Birkhäuser, Basel, 2007). J. P. (Hans) Goedbloed, R. Keppens, and S. Poedts, Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas (Cambridge Univ. Press, Cambridge, 2010). P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969). B. Haskell and A. Melatos, Int. J. Mod. Phys. D 24, 1530008 (2015). Ya. N. Istomin and D. N. Sob’yanin, Astron. Lett. 33, 660 (2007). Ya. N. Istomin and D. N. Sob’yanin, Astron. Lett. 37, 468 (2011a). Ya. N. Istomin and D. N. Sob’yanin, J. Exp. Theor. Phys. 113, 592 (2011b). Ya. N. Istomin and D. N. Sob’yanin, J. Exp. Theor. Phys. 113, 605 (2011c). J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999). A. D. Kaminker, A. A. Kaurov, A. Y. Potekhin, and D. G. Yakovlev, ASP Conf. Ser. 466, 237 (2012). L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Pergamon, Oxford, 1975; Nauka, Moscow, 1988). L. D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984). S. K. Lander, Phys. Rev. Lett. 110, 071101 (2013). S. K. Lander, Mon. Not. R. Astron. Soc. 437, 424 (2014). S. K. Lander, N. Andersson, D. Antonopoulou, and A. L. Watts, Mon. Not. R. Astron. Soc. 449, 2047 (2015). B. Link, Astrophys. Space Sci. 308, 435 (2007). K. Makishima, T. Enoto, J. S. Hiraga, T. Nakano, K. Nakazawa, S. Sakurai, M. Sasano, and H. Murakami, Phys. Rev. Lett. 112, 171102 (2014). A. Mastrano, A. Melatos, A. Reisenegger, and T. Akgün, Mon. Not. R. Astron. Soc. 417, 2288 (2011). A. Mastrano, A. G. Suvorov, and A. Melatos, Mon. Not. R. Astron. Soc. 453, 522 (2015). M. A. McLaughlin, A. G. Lyne, D. R. Lorimer, M. Kramer, A. J. Faulkner, R. N. Manchester, J. M. Cordes, F. Camilo, et al., Nature 439, 817 (2006). S. Mereghetti, Astron. Astrophys. Rev. 15, 225 (2008). J. J. Miller, M. A. McLaughlin, N. Rea, K. Lazaridis, E. F. Keane, M. Kramer, and A. Lyne, Astrophys. J. 776, 104 (2013). I. Ya. Pomeranchuk, Zh. Eksp. Teor. Fiz. 20, 919 (1950). A. N. Timokhin, G. S. Bisnovatyi-Kogan, and H. C. Spruit, Mon. Not. R. Astron. Soc. 316, 734 (2000). N. Wang, R. N. Manchester, and S. Johnston, Mon. Not. R. Astron. Soc. 377, 1383 (2007). O. Zanotti, V. Morozova, and B. Ahmedov, Astron. Astrophys. 540, A126 (2012). V. F. Zhuravlev, Principles of Theoretical Mechanics, 2nd ed. (Fizmatlit, Moscow, 2001) [in Russian].