Breakdown for a Kirchhoff-type Beam with a Fractional Boundary Feedback
Tóm tắt
A Kirchhoff-type equation describing the transversal vibrations of a beam is considered. The beam is clamped to a rigid base at one part of its edge and free at the remaining part. On the free part, it is subject to a feedback involving fractional derivatives instead of the classical velocity of the deflection and angular velocity. In presence of an external nonlinear source we prove that solutions blow up at a finite time.
Tài liệu tham khảo
R. A. Adams, Sobolev spaces, Academic Press, New York (1975).
M. R. Alaimia and N.-E. Tatar, Blow-up for the wave equation with a fractional damping. J. Appl. Anal. 11 (2005), No. 1, 133–144.
R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheology 27 (1983), 201–210.
_____, A different approach to the analysis of viscoelastically damped structures. AIAA J. 21 (1983), 741–748.
_____, On the appearance of the fractional derivative in the behavior of real material. J. Appl. Mech. 51 (1983), 294–298.
V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms. J. Differential Equations 109 (1994), 295–308.
G. Gripenberg, S. O. Londen, and O. Staffans, Volterra integral and functional equations. Cambridge Univ. Press, Cambridge (1990).
F. Guo and F. Huang, Boundary feedback stabilization of the undamped Euler–Bernoulli beam with both ends free. SIAM J. Control Optim. 43 (2004), No. 1, 341–356.
M. Kirane and N.-E. Tatar, Exponential growth for a fractionally damped wave equation. Z. Anal. Anwendungen 22 (2003), No. 1, 167–177.
G. Kirchhoff, Vorlesungen über mathematische Physik: Mechanik. Druck and Verlag von B. G. Teubner, Leipzig (1877).
S. Labidi and N.-E. Tatar, Unboundedness for the Euler–Bernoulli beam equation with fractional boundary dissipation. Appl. Math. Comp. 161 (2005), 697–706.
_____, Blow up for the Euler-Bernoulli beam problem with a fractional boundary dissipation (in press).
J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1. Dunod, Paris (1968).
F. Mainardi and E. Bonetti, The applications of real order derivatives in linear viscoelasticity. Rheol. Acta 26 (1988), 64–67.
D. Matignon, J. Audounet, and G. Montseny, Energy decay for wave equations with damping of fractional order. In: Proc. Fourth Int. Conf. Math. Numer. Aspects of Wave Propagation Phenomena, INRIA-SIAM, Golden, Colorado (1998), pp. 638–640.
B. Mbodje, Wave energy decay under fractional derivative controls. IMA J. Math. Control Inform. (2005), 1–21.
B. Mbodje and G. Montseny, Boundary fractional derivative control of the wave equation. IEEE Trans. Automat. Control 40, (1995), No. 2, 378–382.
S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky. J. Math. Anal. Appl. 265 (2002), 296–308.
S. Messaoudi, B. Said-Houari, and N.-E. Tatar, Global existence and asymptotic behavior for a fractional differential equation. Appl. Math. Comp. (in press).
G. Montseny, J. Audounet, and D. Matignon, Fractional integrodifferential boundary control of the Euler–Bernoulli beam. Publ. du Dépt. Traitement du Signal et de l’Image, Ecole Norm. Super. de Télécommunication, 98C003, October 1998.
T. F. Nonnenmacher and R. Metzler, On the Riemann–Liouville fractional calculus and some recent applications. Fractals 3 (1995), 557–566.
K. B. Oldham and J. Spanier, The fractional calculus. Academic Press, New York (1974).
L. Payne and D. H. Sattinger, Saddle points and instability on nonlinear hyperblic equations. Israel J. Math. 22 (1975), 273–303.
I. Podlubny, Fractional differential equation. Math. Sci. Engrg. 198 (1999).
G. Propst and J. Prüss, On wave equations with boundary dissipation of memory type. J. Integral Equations Appl. 8 (1996), No. 1, 99–123.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives. Gordon and Breach, Amsterdam (1993).
N.-E. Tatar, A wave equation with fractional damping. Z. Anal. Anwendungen 22 (2003), No. 3, 1–10.
______, The decay rate for a fractional differential equations. J. Math. Anal. Appl. 295 (2004), 303–314.
_____, A blow-up result for a fractionally damped wave equation. Nonlinear Differential Equations Appl. 12 (2005), No. 2, 215–226.
E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping and source terms. J. Differential Equations 186 (2002), 259–298.