Brazilian forensic casework analysis through MPS applications: Statistical weight-of-evidence and biological nature of criminal samples as an influence factor in quality metrics

Forensic Science International - Tập 303 - Trang 109938 - 2019
E. Avila1,2,3, C.P. Cavalheiro2, A.B. Felkl2, P. Graebin2, A. Kahmann4, C.S. Alho2,3
1Setor Técnico-Científico, Superintendência Regional do Rio Grande do Sul, Polícia Federal, Porto Alegre, Brazil
2Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
3Instituto Nacional de Ciência e Tecnologia INCT Ciências Forenses, Porto Alegre, Brazil
4Instituto de Matemática, Estatística e Física, Universidade Federal de Rio Grande, Rio Grande, Brazil

Tài liệu tham khảo

Butler, 2015, The future of forensic DNA analysis, Philos. Trans. B, 370, 10.1098/rstb.2014.0252 Wickenheiser, 2002, Trace DNA: a review, discussion and theory, and applications of the transfer of trace quantities of DNA through skin contact, J. Forensic Sci., 47, 442, 10.1520/JFS15284J Martins, 2015, DNA quantification by real-time PCR in different forensic samples, Forensic Sci. Int. Genet. Suppl. Ser., 5, e545, 10.1016/j.fsigss.2015.09.215 Murphy, 2018, Forensic DNA typing, Annu. Rev. Criminol., 1, 497, 10.1146/annurev-criminol-032317-092127 Alketbi, 2018, The affecting factors of touch DNA, J. Forensic Res., 9, 10.4172/2157-7145.1000424 Roewer, 2013, DNA fingerprinting in forensics: past, present, future, Investig. Genet., 4, 22, 10.1186/2041-2223-4-22 National Institute of Justice, 2000 Kidd, 2006, Developing a SNP panel for forensic identification of individuals, Forensic Sci. Int., 164, 20, 10.1016/j.forsciint.2005.11.017 Sanchez, 2006, A multiplex assay with 52 single nucleotide polymorphisms for human identification, Electrophoresis., 27, 1713, 10.1002/elps.200500671 Canturk, 2014, Current status of the use of Single-Nucleotide Polymorphisms in forensic practices, Genet. Test. Mol. Biomarkers, 10.1089/gtmb.2013.0466 Børsting, 2014, Evaluation of the Ion Torrent™ HID SNP 169-plex: a SNP typing assay developed for human identification by second generation sequencing, Forensic Sci. Int. Genet., 10.1016/j.fsigen.2014.06.004 Eduardoff, 2014, Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM, Forensic Sci. Int. Genet., 12, 144 Buchard, 2016, ISO 17025 validation of a next‐generation sequencing assay for relationship testing, Electrophoresis., 37, 2822, 10.1002/elps.201600269 Meiklejohn, 2017, Evaluation of the precision ID identity panel for the ion torrent™ PGM™ sequencer, Forensic Sci. Int. Genet., 31, 56 Guo, 2016, Next generation sequencing of SNPs using the HID-Ion AmpliSeq™ identity panel on the ion torrent PGM™ platform, Forensic Sci. Int. Genet., 25, 73, 10.1016/j.fsigen.2016.07.021 García, 2017, Allele frequencies and other forensic parameters of the HID-Ion AmpliSeq™ Identity Panel markers in Basques using the Ion Torrent PGM™ platform, Forensic Sci. Int. Genet., 28, e8, 10.1016/j.fsigen.2017.03.010 Li, 2018, SNP typing using the HID-Ion AmpliSeq™ Identity Panel in a southern Chinese population, Int. J. Legal Med., 132, 997, 10.1007/s00414-017-1706-3 Liu, 2018, Massively parallel sequencing of 124 SNPs included in the precision ID identity panel in three East Asian minority ethnicities, Forensic Sci. Int. Genet., 35, 141, 10.1016/j.fsigen.2018.05.002 van der Heijden, 2017, Comparison of manual and automated AmpliSeq™ workflows in the typing of a Somali population with the Precision ID Identity Panel, Forensic Sci. Int. Genet., 31, 118, 10.1016/j.fsigen.2017.09.009 Avila, 2019, Forensic characterization of Brazilian regional populations through massive parallel sequencing of 124 SNPs included in HID ion Ampliseq Identity Panel, Forensic Sci. Int. Genet., 40, 74, 10.1016/j.fsigen.2019.02.012 Salata, 2016, Revealing the challenges of low template DNA analysis with the prototype Ion AmpliSeq™ Identity panel v2.3 on the PGM™ Sequencer, Forensic Sci. Int. Genet., 22, 25, 10.1016/j.fsigen.2015.07.011 Zeng, 2019, Assessment of impact of DNA extraction methods on analysis of human remain samples on massively parallel sequencing success, Int. J. Legal Med., 133, 51, 10.1007/s00414-018-1955-9 Dabney, 2012, Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries, BioTechniques., 52, 87, 10.2144/000113809 Kebschull, 2015, Sources of PCR- induced distortions in high-throughput sequencing data sets, Nucleic Acids Res., 43 Apaga, 2017, Comparison of two massively parallel sequencing platforms using 83 Single Nucleotide Polymorphisms for human identification, Sci. Rep., 7, 398, 10.1038/s41598-017-00510-3 Woerner, 2018, Evaluation of the precision ID mtDNA whole genome panel on two massively parallel sequencing systems, Forensic Sci. Int. Genet., 36, 213, 10.1016/j.fsigen.2018.07.015 Abnizova, 2017, Computational errors and biases in short read Next Generation Sequencing, J. Proteomics Bioinform., 10, 1, 10.4172/jpb.1000420 WMA, 2013, World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects, J. Am. Med. Assoc., 310, 2191, 10.1001/jama.2013.281053 BRASIL, 2019, Diário Oficial [da República Federativa do Brasil], 50, 60 Buckleton, 2016 Kling, 2014, Familias 3-Extensions and new functionality, Forensic Sci. Int. Genet., 13, 121, 10.1016/j.fsigen.2014.07.004 Aguiar, 2011, Updated Brazilian STR allele frequency data using over 100,000 individuals: an analysis of CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, Penta d, Penta e, TH01, TPOX and vWA loci, Forensic Sci. Int. Genet., 6, 504, 10.1016/j.fsigen.2011.07.005 Poiares, 2010, Allele frequencies of 15 STRs in a representative sample of the Brazilian population, Forensic Sci. Int. Genet., 4, e61, 10.1016/j.fsigen.2009.05.006 Raimann, 2012, Population genetic analyses of the AmpFlSTR® NGM™ in Brazil, Int. J. Legal Med., 126, 337, 10.1007/s00414-011-0606-1 Phillips, 2012, SNPs as supplements in simple kinship analysis or as core markers in distant pairwise relationship tests: when do SNPs add value or replace well-established and powerful STR tests?, Transfus. Med. Hemotherapy, 39, 202, 10.1159/000338857 Parson, 2014, DNA commission of the international society for forensic genetics: revised and extended guidelines for mitochondrial DNA typing, Forensic Sci. Int. Genet., 13, 134, 10.1016/j.fsigen.2014.07.010 Andersen, 2017, How convincing is a matching Y-chromosome profile?, PLoS Genet., 13, 10.1371/journal.pgen.1007028 1000 Genomes Project Consortium, 2012, An integrated map of genetic variation from 1092 human genomes, Nature, 491, 56, 10.1038/nature11632 Moura, 2015, Meta-analysis of Brazilian genetic admixture and comparison with other Latin America countries, Am. J. Hum. Genet., 27, 674 Hessab, 2018, Evaluating DNA evidence in a genetically complex population, Forensic Sci. Int. Genet., 36, 141, 10.1016/j.fsigen.2018.06.019 Vernarecci, 2015, Quantifiler® Trio Kit and forensic samples management: a matter of degradation, Forensic Sci. Int. Genet., 16, 77, 10.1016/j.fsigen.2014.12.005 Kampmann, 2016, High-throughput sequencing of forensic genetic samples using punches of FTA cards with buccal swabs, BioTechniques., 61, 149, 10.2144/000114453 Sidstedt, 2018, Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR, Anal. Bioanal. Chem., 410, 2569, 10.1007/s00216-018-0931-z Sim, 2019, In-field whole genome sequencing using the MinIon nanopore sequencer to detect the presence of high-prized military targets, Aust. J. Forensic Sci., 10.1080/00450618.2019.1568562 Ross, 2013, Characterizing and measuring bias in sequence data, Genome Biol., 14, 10.1186/gb-2013-14-5-r51 Xu, 2018, A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data, Comput. Struct. Biotechnol. J., 16, 15, 10.1016/j.csbj.2018.01.003 Wai, 2018, Performance of the early access AmpliSeq™ Mitochondrial Panel with degraded DNA samples using the Ion Torrent™ platform, Electrophoresis., 39, 2776, 10.1002/elps.201700371 Sims, 2014, Sequencing depth and coverage: key considerations in genomic analyses, Nat. Rev. Genet., 15, 121, 10.1038/nrg3642 Burrill, 2019, A review of trace “Touch DNA” deposits: variability factors and an exploration of cellular composition, Forensic Sci. Int. Genet., 39, 8, 10.1016/j.fsigen.2018.11.019 Quinones, 2012, Cell free DNA as a component of forensic evidence recovered from touched surfaces, Forensic Sci. Int. Genet., 6, 26, 10.1016/j.fsigen.2011.01.004 Vandewoestyne, 2013, Presence and potential of cell free DNA in different types of forensic samples, Forensic Sci. Int. Genet., 7, 316, 10.1016/j.fsigen.2012.12.005 Stanciu, 2015, Optical characterization of epidermal cells and their relationship to DNA recovery from touch samples, F1000 Res., 4, 1360, 10.12688/f1000research.7385.1 Hyun, 2018, Salivary exosome and cell-free DNA for cancer detection, Micromachines (Basel), 9, 340, 10.3390/mi9070340 Snyder, 2016, Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin, Cell, 164, 57, 10.1016/j.cell.2015.11.050 Bax, 2017, Getting the chemistry right: protonation, tautomers and the importance of H atoms in biological Chemistry, Acta Crystallogr., D73, 131 Abyzov, 2017, One thousand somatic SNVs per skin fibroblast cell set baseline of mosaic mutational load with patterns that suggest proliferative origin, Genome Res., 27, 512, 10.1101/gr.215517.116 De, 2011, Somatic mosaicism in healthy human tissues, Trends Genet., 27, 217, 10.1016/j.tig.2011.03.002 O’Huallachain, 2012, Extensive genetic variation in somatic human tissues, PNAS., 109, 18018, 10.1073/pnas.1213736109 Abyzov, 2012, Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells, Nature., 497, 438, 10.1038/nature11629 Grönniger, 2010, Aging and chronic sun exposure cause distinct epigenetic changes in human skin, PLoS Genet., 6, 10.1371/journal.pgen.1000971 Bormann, 2016, Reduced DNA methylation patterning and transcriptional connectivity define human skin aging, Aging Cell, 15, 563, 10.1111/acel.12470 Gosch, 2019, On DNA transfer: the lack and difficulty of systematic research and how to do it better, Forensic Sci. Int. Genet., 40, 24, 10.1016/j.fsigen.2019.01.012 BRASIL, 2017, Ministério de Justiça e Segurança Pública. Manual de procedimentos operacionais da Rede Integrada de Bancos de Perfis Genéticos, aprovado pela Resolução n° 08, de 24 de outubro de 2017, Diário Oficial [da República Federativa do Brasil], 2235, 63 SWGDAM - Scientific Working Group on DNA Analysis Methods. Addendum to "SWGDAM Interpretation Guidelines for Autosomal STR Typing by Forensic DNA Testing Laboratories" to Address Next Generation Sequencing. Available online at https://www.swgdam.org/publications.