Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Arnicas Brazil: hợp chất sinh học, đặc tính dược lý, khả năng sử dụng và ứng dụng lâm sàng
Springer Science and Business Media LLC - Trang 1-36 - 2023
Tóm tắt
Arnicas Brazil thuộc họ Asteraceae và chủ yếu có thể được tìm thấy trong hệ sinh thái Cerrado (savanna) của Brazil nhưng cũng xuất hiện ở Caatinga, Rừng Atlantic, Pampa, Pantanal và Rừng Amazon. Lá, rễ, cụm hoa và hoa của cây đã cho thấy tiềm năng dược liệu cao như được chứng minh bởi các nghiên cứu gần đây. Các loài arnica Brazil được chọn dựa trên tính đại diện về dân tộc dược học, với 9 loài có liên quan nhất được xác định: Calea uniflora Less, Chaptalia nutans (L.) Polák., Lychnophora ericoides Mart, L. pinaster Mart. và L. salicifolia Mart, Porophyllum ruderale (Jacq.) Cass., Pseudobrickellia brasiliensis (Spreng.) R.M. King & H. Rob. Solidago chilensis Meyen, Sphagneticola trilobata (L.) Pruski. Các loài arnica Brazil có nhiều thành phần dược lý/chức năng sinh học như flavonoid, hợp chất phenolic, và terpenoid, đặc biệt là monoterpen và sesquiterpen. Các nghiên cứu thí nghiệm in vitro và in vivo cho thấy lợi ích của nó trong việc ngăn ngừa, cải thiện và điều trị các tình trạng hoặc bệnh lý ở người với nhiều tác dụng có lợi như hoạt động chống viêm, giảm đau, chống phù nề, kháng khuẩn, chống oxy hóa, trypanocidal, và leishmanicidal. Chiết xuất từ arnica và các hợp chất sinh học của chúng đã được đề xuất như những công cụ hữu ích trong ngành công nghiệp, ví dụ, trong các công thức bôi và hóa học xanh. Giống như nhiều loại thực vật bản địa khác phân bố khắp Brazil, arnica có tiềm năng chức năng cao cần được khám phá thêm. Trong bối cảnh này, bài đánh giá hiện tại nhằm mô tả khả năng sử dụng của arnica Brazil, với trọng tâm là phân bố địa lý, ứng dụng trong y học truyền thống, thành phần chức năng sinh học, tác động đến sức khỏe và các ứng dụng tiềm năng.
Từ khóa
#arnicas Brazil #hợp chất sinh học #đặc tính dược lý #ứng dụng lâm sàngTài liệu tham khảo
Abreu VGC, Takahashi JA, Duarte LP et al (2011) Evaluation of the bactericidal and trypanocidal activities of triterpenes isolated from the leaves, stems, and flowers of Lychnophora pinaster. Rev Bras 21:615–621. https://doi.org/10.1590/S0102-695X2011005000095
Abreu VGC, Correa GM, Silva TM et al (2013) Anti-inflammatory effects in muscle injury by transdermal application of gel with Lychnophora pinaster aerial parts using phonophoresis in rats. BMC Complement Altern Med 13:270. https://doi.org/10.1186/1472-6882-13-270
Agra MDF, Silva KN, Basílio IJLD et al (2008) Survey of medicinal plants used in the region Northeast of Brazil. Rev Bras 18:472–508. https://doi.org/10.1590/S0102-695X2008000300023
Almeida AM, Prado PI, Lewinsohn TM (2004) Geographical distribution of Eupatorieae (Asteraceae) in South-eastern and South Brazilian Mountain Ranges. Plant Ecol 174:163–181. https://doi.org/10.1023/B:VEGE.0000046061.41915.d9
Almeida VG, Avelar-Freitas BA, Santos MG et al (2017) Inhibitory effect of the Pseudobrickellia brasiliensis (Spreng) R.M. King & H. Rob. aqueous extract on human lymphocyte proliferation and IFN-γ and TNF-α production in vitro. Braz J Med Biol Res 50:1–8. https://doi.org/10.1590/1414-431X20175163
Amorim DE (2016) Chemical constituents of Pseudobrickellia brasiliensis leaves (Spreng.) R.M. King & H. Rob. (Asteraceae). Rev Bras Pl Med 18:408–414
Assini FL, Fabrício EJ, Lang KL (2013) Efeitos farmacológicos do extrato aquoso de Solidago chilensis Meyen em camundongos. Revista Brasileira De Plantas Medicinais 15:130–134. https://doi.org/10.1590/S1516-05722013000100018
Baccarin T, Czepula AI, Ferreira RA, Lucinda-silva RM (2009) Análise morfoanatômica das partes aéreas de Wedelia. Rev Bras 19:612–616
Badilla B, Mora G, Poveda LJ (1999) Anti-inflammatory activity of aqueous extracts of five Costa Rican medicinal plants in Sprague-Dawley rats. Rev Biol Trop 47:723–727
Badilla B, Chaves F, Mora G, Poveda LJ (2006) Edema induced by Bothrops asper (Squamata: Viperidae) snake venom and its inhibition by Costa Rican plant extracts. Rev Biol Trop 54:245–252. https://doi.org/10.15517/rbt.v54i2.13865
Balekar N, Katkam NG, Nakpheng T et al (2012) Evaluation of the wound healing potential of Wedelia trilobata (L.) leaves. J Ethnopharmacol 141:817–824. https://doi.org/10.1016/j.jep.2012.03.019
Barros CH, Matosinhos RC, Bernardes ACFPF et al (2021) Lychnophora pinaster’s effects on inflammation and pain in acute gout. J Ethnopharmacol 280:114460. https://doi.org/10.1016/j.jep.2021.114460
Batista R, García PA, Castro MA et al (2013) Synthesis, cytotoxicity and antiplasmodial activity of novel ent-kaurane derivatives. Eur J Med Chem 62:168–176. https://doi.org/10.1016/j.ejmech.2012.12.010
Bernardes ACFPF, Matosinhos RC, de Paula Michel Araújo MC et al (2021) Sesquiterpene lactones from Lychnophora species: antinociceptive, anti-inflammatory, and antioxidant pathways to treat acute gout. J Ethnopharmacol 269:113738. https://doi.org/10.1016/j.jep.2020.113738
Bezerra MZB, Andrade-Neto M, de Freitas RM (2002) The essential oil of Porophyllum ruderale Cass (Asteraceae). J Essent Oil Res 14:14–15. https://doi.org/10.1080/10412905.2002.9699746
Borella J, Lopes J, Vichnewski W et al (1998) Sesquiterpene lactones, triterpenes and flavones from Lychnophora ericoides and Lychnophora pseudovillosissima. Biochem Syst Ecol 26:671–676. https://doi.org/10.1016/S0305-1978(98)00004-0
Borghi SM, Mizokami SS, Carvalho TT et al (2021) The diterpene from Sphagneticola trilobata (L.) Pruski, kaurenoic acid, reduces lipopolysaccharide-induced peritonitis and pain in mice. J Ethnopharmacol 273:113980. https://doi.org/10.1016/j.jep.2021.113980
Borghi SM, Domiciano TP, Rasquel-Oliveira FS et al (2022) Sphagneticola trilobata (L.) Pruski-derived kaurenoic acid prevents ovalbumin-induced asthma in mice: Effect on Th2 cytokines, STAT6/GATA-3 signaling, NFκB/Nrf2 redox sensitive pathways, and regulatory T cell phenotype markers. J Ethnopharmacol 283:114708. https://doi.org/10.1016/j.jep.2021.114708
Borsato MLC, Grael CFF, Souza GEP, Lopes NP (2000) Analgesic activity of the lignans from Lychnophora ericoides. Phytochemistry 55:809–813. https://doi.org/10.1016/S0031-9422(00)00388-5
Bortoleti BTS, da Detoni MB, Gonçalves MD et al (2022) Solidagenone in vivo leishmanicidal activity acting in tissue repair response, and immunomodulatory capacity in Leishmania amazonensis. Chemico-Biol Interact 361:109969. https://doi.org/10.1016/j.cbi.2022.109969
Bruck de Souza L, Leitão Gindri A, de Andrade FT et al (2020) Phytochemical analysis, antioxidant activity, antimicrobial activity, and cytotoxicity of Chaptalia nutans leaves. Adv Pharmacol Pharm Sci 2020:3260745. https://doi.org/10.1155/2020/3260745
Bucciarelli A, Minetti A, Milczakowskyg C, Skliar M (2010) Evaluation of gastroprotective activity and acute toxicity of Solidago chilensis Meyen (Asteraceae). Pharm Biol 48:1025–1030. https://doi.org/10.3109/13880200903453131
Buddhakala N, Talubmook C (2020) Toxicity and antidiabetic activity of ethanolic extract of Sphagneticola trilobata (L.) Pruski flower in rats. J Ethnopharmacol 262:113128. https://doi.org/10.1016/j.jep.2020.113128
Buqui GA, Sy SKB, Merino-Sanjuán M et al (2015) Characterization of intestinal absorption of C-glycoside flavonoid vicenin-2 from Lychnophora ericoides leafs in rats by nonlinear mixed effects modeling. Rev Bras 25:212–218. https://doi.org/10.1016/j.bjp.2015.04.001
Caesar LK, Cech NB (2019) Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep 36:869–888. https://doi.org/10.1039/c9np00011a
Cardoso PDS, Pagnan R, Freitas MD et al (2019) Preclinical studies of hydroalcoholic extract of Calea uniflora Less TT—Estudios preclínicos de extracto hidroalcohólico de Calea uniflora Less. Acta Toxicol Argent 27:49–59
Cardoso VM, Campos FF, Santos ARO et al (2020) Biotechnological applications of the medicinal plant Pseudobrickellia brasiliensis and its isolated endophytic bacteria. J Appl Microbiol 129:926–934. https://doi.org/10.1111/jam.14666
Catarino HRC, de Godoy NP, Scharlack NK et al (2015) InGaP 670-nm laser therapy combined with a hydroalcoholic extract of Solidago chilensis Meyen in burn injuries. Lasers Med Sci 30:1069–1079. https://doi.org/10.1007/s10103-014-1707-0
Chi HT, Thuong NT, Ly BT (2021) Sphagneticola Trilobata (L.) Pruski (Asteraceae) Methanol Extract Induces Apoptosis in Leukemia Cells through Suppression of BCR/ABL. Plants 10
Craveiro AA, Matos FJA, Alencar JW, Machado MIL et al (1993) Volatile constituents of two Wedelia species. J Essen Oil Res 5:439–441. https://doi.org/10.1080/10412905.1993.9698255
Coelho de Souza G, Haas APS, von Poser GL et al (2004) Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J Ethnopharmacol 90:135–143. https://doi.org/10.1016/j.jep.2003.09.039
Coile NC, Jones SB (1981) Lychnophora (Compositae: Vernonieae), a genus endemic to the Brazilian Planalto. Brittonia 33:528–542. https://doi.org/10.2307/2806758
Collevatti RG, Rabelo SG, Vieira RF (2009) Phylogeography and disjunct distribution in Lychnophora ericoides (Asteraceae), an endangered cerrado shrub species. Ann Bot 104:655–664. https://doi.org/10.1093/aob/mcp157
Conde-Hernández LA, Guerrero-Beltrán JÁ (2014) Total phenolics and antioxidant activity of Piper auritum and Porophyllum ruderale. Food Chem 142:455–460. https://doi.org/10.1016/j.foodchem.2013.07.078
Conti R, Chagas FO, Caraballo-Rodriguez AM et al (2016) Endophytic Actinobacteria from the Brazilian Medicinal Plant Lychnophora ericoides Mart. and the Biological Potential of Their Secondary Metabolites. Chem Biodivers 13:727–736. https://doi.org/10.1002/cbdv.201500225
Correa-Betanzo J, Allen-Vercoe E, McDonald J et al (2014) Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chem 165:522–531. https://doi.org/10.1016/j.foodchem.2014.05.135
Cos P, Vlietinck AJ, Vanden BD, Maes L (2006) Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept.’ J Ethnopharmacol 106:290–302. https://doi.org/10.1016/j.jep.2006.04.003
Curado MA, Oliveira CBA, Jesus JG et al (2006) Environmental factors influence on chemical polymorphism of the essential oils of Lychnophora ericoides. Phytochemistry 67:2363–2369. https://doi.org/10.1016/j.phytochem.2006.08.002
da Bortoleti BTS, Gonçalves MD, Tomiotto-Pellissier F et al (2018) Grandiflorenic acid promotes death of promastigotes via apoptosis-like mechanism and affects amastigotes by increasing total iron bound capacity. Phytomedicine 46:11–20. https://doi.org/10.1016/j.phymed.2018.06.010
da Bortoleti BTS, Gonçalves MD, Tomiotto-Pellissier F et al (2021) Solidagenone acts on promastigotes of L. amazonensis by inducing apoptosis-like processes on intracellular amastigotes by IL-12p70/ROS/NO pathway activation. Phytomedicine 85:153536. https://doi.org/10.1016/j.phymed.2021.153536
da Rosa JS, de Mello SVGV, Vicente G et al (2017) Calea uniflora Less. attenuates the inflammatory response to carrageenan-induced pleurisy in mice. Int Immunopharmacol 42:139–149. https://doi.org/10.1016/j.intimp.2016.11.029
da Rosa JS, Nascimento MVPDS, Parisotto EB et al (2019) Phenolic compounds Isolated from Calea uniflora Less. promote anti-inflammatory and antioxidant effects in mice neutrophils (Ex Vivo) and in Mice Pleurisy Model (In Vivo). Mediators Inflamm. https://doi.org/10.1155/2019/1468502
da Silva AG, de Sousa CPG, Koehler J et al (2010) Evaluation of an extract of Brazilian arnica (Solidago chilensis Meyen, asteraceae) in treating lumbago. Phytother Res 24:283–287. https://doi.org/10.1002/ptr.2934
da Silva CJ, Barbosa LCA, Demuner AJ et al (2012) Chemical composition and histochemistry of Sphagneticola trilobata essential oil. Rev Bras 22:482–489. https://doi.org/10.1590/S0102-695X2012005000012
da Silva AG, Machado ER, de Almeida LM et al (2015a) A clinical trial with Brazilian Arnica (Solidago chilensis Meyen) glycolic extract in the treatment of tendonitis of flexor and extensor tendons of wrist and hand. Phytother Res 29:864–869. https://doi.org/10.1002/ptr.5323
de Amorim MLL (2012) Estudo fitoquímico e ensaios biológicos de Pseudobrickellia brasiliensis (Spreng.) R.M. King & H. Rob (ASTERACEAE)
de Amorim MLL, Godinho WM, Archanjo FC et al (2016) Chemical constituents of Pseudobrickellia brasiliensis leaves (Spreng.) RM King & H. Rob. (Asteraceae). Rev Bras Pl Med 18:408–414. https://doi.org/10.1590/1983-084X/15_185
de Athayde AE, Richetti E, Wolff J et al (2019) “Arnicas” from Brazil: comparative analysis among ten species. Rev Bras 29:401–424. https://doi.org/10.1016/j.bjp.2019.02.006
de Athayde AE, de Araujo CES, Sandjo LP, Biavatti MW (2021) Metabolomic analysis among ten traditional “Arnica” (Asteraceae) from Brazil. J Ethnopharmacol 265:113149. https://doi.org/10.1016/j.jep.2020.113149
de Barros M, Mota da Silva L, Boeing T et al (2016) Pharmacological reports about gastroprotective effects of methanolic extract from leaves of Solidago chilensis (Brazilian arnica) and its components quercitrin and afzelin in rodents. Naunyn-Schmiedeberg’s Arch Pharmacol 389:403–417. https://doi.org/10.1007/s00210-015-1208-0
de Brito TM, Amendoeira FC, de Oliveira TB et al (2021) Anti-inflammatory activity and chemical analysis of different fractions from Solidago chilensis Inflorescence. Oxid Med Cell Longev 2021:7612380. https://doi.org/10.1155/2021/7612380
de Matos DM, Viana MR, Alvim de O MC et al (2018) Pharmacokinetic profile and oral bioavailability of Kaurenoic acid from Copaifera spp. in rats. Fitoterapia 128:142–147. https://doi.org/10.1016/j.fitote.2018.05.013
de Souza LB, Gindri AL, de Andrade Fortes T, Enderle J, Roehrs R, Manfredini V, Gasparotto Denardin EL (2021) Chaptalia nutans Polak: root extract has high in vitro antioxidant activity and low cytotoxicity in vivo. J Med Food 24:161–171. https://doi.org/10.1089/jmf.2019.0309
de Bastos e Silva Cerqueira M, de Souza JT, Júnior RA, Peixoto ABF (1987) Açäo analgésica do extrato bruto aquoso liofilizado do caule e folhas da Lychnophora ericoides Mart. (arnica)
do Nascimento AM, de Oliveira DCR, Albuquerque S (2002) Evaluation of trypanocidal activity from Calea uniflora (Heliantheae-Asteraceae) extracts. Rev Bras 12:49–50. https://doi.org/10.1590/s0102-695x2002000300023
do Nascimento AM, de Oliveira DCR, Salvador MJ et al (2004) Trypanocidal and antifungal activities of p-hydroxyacetophenone derivatives from Calea uniflora (Heliantheae, Asteraceae). J Pharm Pharmacol 56(663):669. https://doi.org/10.1211/0022357023231
dos Santos MD, Gobbo-Neto L, Albarella L et al (2005) Analgesic activity of di-caffeoylquinic acids from roots of Lychnophora ericoides (Arnica da serra). J Ethnopharmacol 96:545–549. https://doi.org/10.1016/j.jep.2004.09.043
Dos Santos MD, Chen G, Almeida MC et al (2010) Effects of caffeoylquinic acid derivatives and C-flavonoid from Lychnophora ericoides on in vitro inflammatory mediator production. Nat Prod Commun 5:733–740. https://doi.org/10.1177/1934578x1000500512
Duarte MDR, Siebenrok MCN, Empinotti CB (2007) Anatomia comparada de espécies de arnica: Porophyllum ruderale (Jacq.) Cass. e Chaptalia nutans (L.) Pohl. Revista De Ciencias Farmaceuticas Basica e Aplicada 28:193–201
Duthen S, Gadéa A, Trempat P et al (2022) Comparison of the phytochemical variation of non-volatile metabolites within mother tinctures of Arnica montana prepared from fresh and dried whole plant using UHPLC-HRMS fingerprinting and chemometric analysis. Molecules (basel, Switzerland). https://doi.org/10.3390/molecules27092737
Egashira GO, Nascimento de Matos RL, Arakawa NS (2020) Isolamento do estigmasterol do extrato hexânico das folhas de Sphagneticola trilobata Pruski (Asteraceae). Semina: Ciências Biológicas e da Saúde 41:43–54. https://doi.org/10.5433/1679-0367.2020v41n1p43
Empinotti CB, Duarte MDR (2006) Caracteres anatômicos de arnica-do-campo: Chaptalia nutans. Acta Farm Bonaer 25:333–338
Fenali SC (2019) Asteraceae em uma área em processo de restauração ambiental no municípiode Siderópolis, sul de Santa Catarina. Universidade do Extremo Sul Catarinense
Fernandes CR, Turatti A, Gouvea DR et al (2011) The prote ctive role of Lychnophora ericoides Mart. (Brazilian Arnica) in 1,2-dimethylhydrazine-induced experimental colon carcinogenesis. Nutr Cancer 63:593–599. https://doi.org/10.1080/01635581.2011.539310
Fernandes EFA, de Oliveira ARM, Barros VP et al (2020) Biomimetic metabolism of Kaurenoic acid validated by microsomal reactions. Rev Bras 30:551–558. https://doi.org/10.1007/s43450-020-00084-8
Ferrari FC, Grabe-Guimarães A, Carneiro CM et al (2012) Toxicological evaluation of ethanolic extract of Lychnophora trichocarpha, Brazilian arnica. Rev Bras 22:1104–1110. https://doi.org/10.1590/S0102-695X2012005000089
Ferraz ADBF, Pinheiro SP, De Oliveira PA et al (2009) Pharmacological and genotoxic evaluation of Calea clematidea and Calea uniflora. Lat Am J Pharm 28:858–862
Ferraz Filha ZS, Vitolo IF, Fietto LG et al (2006) Xanthine oxidase inhibitory activity of Lychnophora species from Brazil (“Arnica”). J Ethnopharmacol 107:79–82. https://doi.org/10.1016/j.jep.2006.02.011
Ferreira SA, Guimarães AG, Ferrari FC et al (2014) Assessment of acute toxicity of the ethanolic extract of Lychnophora pinaster (Brazilian arnica). Rev Bras 24:553–560. https://doi.org/10.1016/j.bjp.2014.09.005
Flórez-Fernández N, Ferreira-Anta T, Torres MD, Domínguez H (2021) Valorization of arnica montana wastes after extraction of the ethanol tincture: application in polymer-based matrices. Polymers. https://doi.org/10.3390/polym13183121
Fontes Vieira R, Bizzo H, Marengo A et al (2020) Volatile profiling of Arnicão (Lychnophora salicifolia mart.), a wild medicinal species from Brazilian Cerrado. Plant Biosystems Int J Deal Aspects Plant Biol 154:1–8. https://doi.org/10.1080/11263504.2018.1549612
Forte ALSA (2016) Avaliação in vitro e in vivo do potencial fotoquimiopreventivo do extrato de Lychnophora salicifolia Mart. e do ácido clorogênico livres e incorporados em lipossomas
Fucina G, Rocha LW, da Silva GF et al (2016) Topical anti-inflammatory phytomedicine based on Sphagneticola trilobata dried extracts. Pharm Biol 54:2465–2474. https://doi.org/10.3109/13880209.2016.1160249
Fukalova TF, García-Martínez MD, Raigón MD (2022) Nutritional composition, bioactive compounds, and volatiles profile characterization of two edible undervalued plants: Portulaca oleracea L. and Porophyllum ruderale (Jacq.) Cass. Plants 11:1–21. https://doi.org/10.3390/plants11030377
Gastaldi B, Catalán CAN, Silva-Sofrás FM, González SB (2018) Solidago chilensis meyen (Asteraceae), a medicinal plant from South America. A comprehensive review: ethnomedicinal uses, phytochemistry and bioactivity. Bol Latinoam Caribe Plant Med Aromat 17:17–29
Gertsch J (2009) How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. J Ethnopharmacol 122:177–183. https://doi.org/10.1016/j.jep.2009.01.010
Gobbo-Neto L, Lopes NP (2008) Online identification of chlorogenic acids, sesquiterpene lactones, and flavonoids in the Brazilian Arnica Lychnophora ericoides Mart. (Asteraceae) leaves by HPLC-DAD-MS and HPLC-DAD-MS/MS and a validated HPLC-DAD method for their simultaneous analysis. J Agric Food Chem 56:1193–1204. https://doi.org/10.1021/jf072812l
Gobbo-Neto L, Santos MD, Kanashiro A et al (2005) Evaluation of the anti-inflammatory and antioxidant activities of Di-C-glucosylflavones from Lychnophora ericoides (Asteraceae). Planta Med 71:3–6. https://doi.org/10.1055/s-2005-837742
Gobbo-Neto L, Guaratini T, Pessoa C et al (2008) Differential bioactivities and metabolic profiles of Lychnophora ericoides from diverse provenances. Planta Med. https://doi.org/10.1055/s-0028-1084671
Goleniowski ME, Bongiovanni GA, Palacio L et al (2006) Medicinal plants from the “Sierra de Comechingones”, Argentina. J Ethnopharmacol 107:324–341. https://doi.org/10.1016/j.jep.2006.07.026
Goulart S, Moritz MIG, Lang KL et al (2007) Anti-inflammatory evaluation of Solidago chilensis Meyen in a murine model of pleurisy. J Ethnopharmacol 113:346–353. https://doi.org/10.1016/j.jep.2007.07.003
Gouvea DR, Meloni F, de Barros Bello Ribeiro A, et al (2012) A new HPLC-DAD-MS/MS method for the simultaneous determination of major compounds in the crude extract of Lychnophora salicifolia Mart. (Brazilian arnicão) leaves: application to chemical variability evaluation. Anal Chim Acta 748:28–36. https://doi.org/10.1016/j.aca.2012.08.027
Gouvea DR, de Barros Bello Ribeiro A, Thormann U et al (2014) Evaluation of Intestinal Permeability of Vicenin-2 and Lychnopholic Acid from Lychnophora salicifolia (Brazilian Arnicão) Using Caco-2 Cells. J Nat Prod 7(7):464–471. https://doi.org/10.1021/np400674t
Gouvea DR, Buqui GA, Lopes JLC et al (2017) An UPLC-MS/MS method for determination of vicenin-2 and lychnopholic acid in rat plasma and its application to a pharmacokinetic study. J Braz Chem Soc 28:427–434. https://doi.org/10.21577/0103-5053.20160249
Govindappa M, Naga Sravya S, Poojashri MN et al (2011) Antimicrobial, antioxidant and in vitro anti-inflammatory activity and phytochemical screening of water extract of wedelia trilobata (L.) hitchc. J Med Plant Res 5:5718–5729
Greinwald A, Hartmann M, Heilmann J et al (2022) Soil and vegetation drive sesquiterpene lactone content and profile in Arnica montana L. flower heads from Apuseni-Mountains. Romania. Front Plant Sci 13:813939. https://doi.org/10.3389/fpls.2022.813939
Guillet G, Bélanger A, Arnason JT (1998) Volatile monoterpenes in Porophyllum gracile and P. ruderale (Asteraceae): identification, localization and insecticidal synergism with α-terthienyl. Phytochemistry 49:423–429. https://doi.org/10.1016/S0031-9422(98)00189-7
Gulcin İ (2020) Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 94:651–715. https://doi.org/10.1007/s00204-020-02689-3
Guzzo LS, Saúde-Guimarães DA, Silva ACA et al (2008) Antinociceptive and anti-inflammatory activities of ethanolic extracts of Lychnophora species. J Ethnopharmacol 116:120–124. https://doi.org/10.1016/j.jep.2007.11.006
Iannitti T, Morales-Medina JC, Bellavite P et al (2016) Effectiveness and safety of Arnica montana in post-surgical setting, pain and inflammation. Am J Ther 23:e184–e197. https://doi.org/10.1097/MJT.0000000000000036
Jabor VAP, Soares DM, Diniz A et al (2010) LC-MS-MS identification and determination of the flavone-C-glucoside vicenin-2 in rat plasma samples following intraperitoneal administration of Lychnophora extract. Nat Prod Commun 5:10. https://doi.org/10.1177/1934578X1000500513
Jácomo ACJ, de Andrade VK, Lotti RG et al (2015) Activity of Porophyllum ruderale leaf extract and 670-nm InGaP laser during burns repair in rats. BMC Complement Altern Med 15:274. https://doi.org/10.1186/s12906-015-0805-2
Jordão CO, Vichnewski W, de Souza GEP et al (2004) Trypanocidal activity of chemical constituents from Lychnophora salicifolia Mart. Phytother Res 18:332–334. https://doi.org/10.1002/ptr.1366
Kade IJ, Barbosa NBV, Ibukun EO et al (2010) Aqueous extracts of Sphagneticola trilobata attenuates streptozotocin-induced hyperglycaemia in rat models by modulating oxidative stress parameters. Biol Med 2:1–13
Kahmen S, Poschlod P (2000) Population size, plant performance, and genetic variation in the rare plant Arnica montana L. in the Rhön, Germany. Basic Appl Ecol 1:43–51. https://doi.org/10.1078/1439-1791-00007
Kazi S, Nirwan S, Kunde S et al (2022) Green Synthesis, characterization and bio-evaluation of Zirconium nanoparticles using the dried biomass of Sphagneticola trilobata plant leaf. BioNanoScience 12:731–740. https://doi.org/10.1007/s12668-022-01006-9
Klein-Junior LC, de Souza MR, Viaene J, Bresolin TMB, de Gasper AL, Henriques AT, Heyden YV (2021) Quality control of herbal medicines: from traditional techniques to state-of-the-art approaches. Planta Med 87:964–988. https://doi.org/10.1055/a-1529-8339
Kriplani P, Guarve K, Baghael US (2017) Arnica montana L.—a plant of healing: review. J Pharm Pharmacol 69:925–945. https://doi.org/10.1111/jphp.12724
Lang K, Corrêa J, Wolff F et al (2017) Biomonitored UHPLC-ESI-QTOF-MS(2) and HPLC-UV thermostability study of the aerial parts of Sphagneticola trilobata (L.) Pruski. Asteraceae Talanta 167:302–309. https://doi.org/10.1016/j.talanta.2017.02.024
Lazo P, Lazo A (2020) Assessment of native and endemic Chilean Plants for removal of Cu, Mo and Pb from mine tailings. Minerals 10:1020
Leite AGB, Farias ETN, de Oliveira AP et al (2019) Phytochemical screening and antimicrobial activity testing of crude hydroalcoholic extract from leaves of Sphagneticola trilobata (Asteraceae). Ciencia Rural. https://doi.org/10.1590/0103-8478cr20180639
Leite AGB, Estevão LRM, Silva CJFL et al (2020) Avaliação morfo-histológica e morfo-histométrica de feridas cutâneas tratadas com Sphagneticola trilobata (L.) Pruski em ratos. Arquivo Brasileiro De Medicina Veterinária e Zootecnia 72:2211–2222. https://doi.org/10.1590/1678-4162-11785
Lima TC, Souza RJ, Santos ADC et al (2016) Evaluation of leishmanicidal and trypanocidal activities of phenolic compounds from Calea uniflora Less. Nat Prod Res 30:551–557. https://doi.org/10.1080/14786419.2015.1030740
Liz R, Vigil SVG, Goulart S et al (2008) The anti-inflammatory modulatory role of Solidago chilensis Meyen in the murine model of the air pouch. J Pharm Pharmacol 60:515–521. https://doi.org/10.1211/jpp.60.4.0015
Locateli G, de Oliveira AB, Miorando D et al (2020) Antidepressant-like effects of solidagenone on mice with bacterial lipopolysaccharide (LPS)-induced depression. Behav Brain Res 395:112863. https://doi.org/10.1016/j.bbr.2020.112863
Lopez Laphitz RM (2009) O gênero Solidago L. (Astereae, Asteraceae) na América do Sul e táxons relacionados na América do Norte (tese de mestrado, Universidade de Waterloo)
Maldini M, Sosa S, Montoro P et al (2009) Screening of the topical anti-inflammatory activity of the bark of Acacia cornigera Willdenow, Byrsonima crassifolia Kunth, Sweetia panamensis Yakovlev and the leaves of Sphagneticola trilobata Hitchcock. J Ethnopharmacol 122:430–433. https://doi.org/10.1016/j.jep.2009.02.002
Malpezzi-Marinho ELA, Molska GR, Freire LIGP et al (2019) Effects of hydroalcoholic extract of Solidago chilensis Meyen on nociception and hypernociception in rodents. BMC Complement Altern Med 19:72. https://doi.org/10.1186/s12906-019-2478-8
Marcondes-Alves L, Fattori V, Borghi SM et al (2019) Kaurenoic acid extracted from Sphagneticola trilobata reduces acetaminophen-induced hepatotoxicity through inhibition of oxidative stress and pro-inflammatory cytokine production in mice. Nat Prod Res 33:921–924. https://doi.org/10.1080/14786419.2017.1416372
Mardina V, Ilyas S, Halimatussakdiah H et al (2021) Anticancer, antioxidant, and antibacterial activities of the methanolic extract from Sphagneticola trilobata (L.) J. F. Pruski leaves. J Adv Pharmaceut Technol Res 12:222–226. https://doi.org/10.4103/japtr.JAPTR_131_21
Marinho BM, Guimarães VHD, Sousa JN et al (2022) Brazilian Cerrado plant (arnica) Lychnophora ericoides Mart. (Asteraceae) toxicity characterization in mice. Phytomed plus 2:100154. https://doi.org/10.1016/j.phyplu.2021.100154
Marques APS, Bonfim FPG, Santos DGPO et al (2020a) Chemical diversity of essential oils from the Brazilian medicinal plant Lychnophora pinaster Mart from different environments. Ind Crops Prod 156:112856. https://doi.org/10.1016/j.indcrop.2020.112856
Marques ÉA, de Oliveira JA, Coelho AD et al (2020b) Porophyllum ruderale (Jacq.) Cass.: a review of the last 39 years. Res Soc Dev 9:5215. https://doi.org/10.33448/rsd-v9i7.5215
Marques ÉA, de Oliveira JA, Coelho AD et al (2020c) Porophyllum ruderale (Jacq.) Cass. uma revisão dos últimos 39 anos. Res Soc Dev 9:e944975215. https://doi.org/10.33448/rsd-v9i7.5215
Martins de Sá Müller C, Coelho GB, de Paula C, Michel Araújo M, Saúde-Guimarães DA (2019) Lychnophora pinaster ethanolic extract and its chemical constituents ameliorate hyperuricemia and related inflammation. J Ethnopharmacol 242:112040. https://doi.org/10.1016/j.jep.2019.112040
Maurice T, Colling G, Muller S, Matthies D (2012) Habitat characteristics, stage structure and reproduction of colline and montane populations of the threatened species Arnica montana. Plant Ecol 213:831–842. https://doi.org/10.1007/s11258-012-0045-1
Melo LQ, Ciampi AY, Vieira RF (2009) Análise da variabilidade genética de arnica (Lychnophora ericoides Less.—Asteraceae) usando marcadores RAPDs. Acta Botanica Brasilica 23:259–266. https://doi.org/10.1590/s0102-33062009000100027
Melo AM, Bittencourt P, Nakutis FS et al (2011) Solidago chilensis Meyen hydroalcoholic extract reduces JNK/IκB pathway activation and ameliorates insulin resistance in diet-induced obesity mice. Exp Biol Med 236:1147–1155. https://doi.org/10.1258/ebm.2011.011105
Mendes do Nascimento A, Costa FC, Thiemann OH, Rodrigues de Oliveira DC (2007) Chromanones with Leishmanicidal Activity from Calea uniflora. Zeitschrift Für Naturforschung C 62:353–356. https://doi.org/10.1515/znc-2007-5-606
Miguel OG, Lima EO, Morais VMF et al (1996) Antimicrobial activity of constituents isolated from Lychnophora salicifolia (Asteraceae). Phytother Res 10:694–696. https://doi.org/10.1002/(SICI)1099-1573(199612)10:8%3c694::AID-PTR923%3e3.0.CO;2-X
Miranda MM, Panis C, da Silva SS et al (2015) Kaurenoic acid possesses leishmanicidal activity by triggering a NLRP12/IL-1β/cNOS/NO Pathway. Mediat Inflamm 15:392918. https://doi.org/10.1155/2015/392918
Mizokami SS, Arakawa NS, Ambrosio SR et al (2012) Kaurenoic acid from Sphagneticola trilobata inhibits inflammatory pain: effect on cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. J Nat Prod 75:896–904. https://doi.org/10.1021/np200989t
Nakajima JN, Ferreira SC da, Fernandes AC et al (2017) In: Roque N (ed) A família Asteraceae no Brasil: classificar e diversidade Online, Scielo Books Salvador
Naveed M, Hejazi V, Abbas M et al (2018) Chlorogenic acid (CGA): pharmacological review and call for further research. Biomed Pharmacother 97:67–74. https://doi.org/10.1016/j.biopha.2017.10.064
Nieto-Trujillo A, Cruz-Sosa F, Luria-Pérez R et al (2021) Arnica montana cell culture establishment, and assessment of its cytotoxic, antibacterial, α-amylase inhibitor, and antioxidant in vitro bioactivities. Plants (basel, Switzerland). https://doi.org/10.3390/plants10112300
Norcini JJ (2003) Setting standards on educational tests. Med Educ 37:464–469. https://doi.org/10.1046/j.1365-2923.2003.01495.x
Oltean H, Robbins C, van Tulder MW, et al (2014) Herbal medicine for low-back pain. The Cochrane database of systematic reviews 2014:CD004504. https://doi.org/10.1002/14651858.CD004504.pub4
Pavarini DP, Semir J, Lopes JLC et al (2021) Time-scale shifting of volatile semiochemical levels in wild type Lychnophora ericoides (Brazilian arnica) and pollinator records. Planta Med 87:101–112. https://doi.org/10.1055/a-1320-4556
Pawłowska KA, Baracz T, Skowrońska W et al (2022) The contribution of phenolics to the anti-inflammatory potential of the extract from Bolivian coriander (Porophyllum ruderale subsp. ruderale). Food Chem 371:131116. https://doi.org/10.1016/j.foodchem.2021.131116
Perry NB, Burgess EJ, Rodríguez Guitián MA et al (2009) Sesquiterpene lactones in Arnica montana: Helenalin and dihydrohelenalin chemotypes in Spain. Planta Med 75:660–666
Petinatti Pavarini D, Nogueira EF, Callejon DR et al (2013) Novel bisabolane derivative from “arnica-da-serra” (Vernonieae: Asteraceae) reduces pro-nociceptive cytokines levels in LPS-stimulated rat macrophages. J Ethnopharmacol 148:993–998. https://doi.org/10.1016/j.jep.2013.05.003
Portella RO, Cordeiro EMG, Marques APS et al (2021) Evidence of altitudinal gradient modifying genomic and chemical diversity in populations of Lychnophora pinaster Mart. Phytochemistry 192:112898. https://doi.org/10.1016/j.phytochem.2021.112898
Posadzki P, Alotaibi A, Ernst E (2012) Adverse effects of aromatherapy: a systematic review of case reports and case series. Int J Risk Saf Med 24:147–161. https://doi.org/10.3233/JRS-2012-0568
Ramos LS, Cardoso PS, Freitas MD et al (2016) Popular medicinal uses of Calea uniflora less. (Asteraceae) and its contribution to the study of Brazilian medicinal plants. Anais Da Academia Brasileira De Ciencias 88:2319–2330. https://doi.org/10.1590/0001-3765201620160120
Rehem BC, Silva Silva AG, Gonçalves DS et al (2019) Anatomia foliar de duas espécies da família Asteraceae usadas para fins medicinais no Sul da Bahia. Braz J Dev 5:30272–30284. https://doi.org/10.34117/bjdv5n12-154
Ribeiro-Silva S, Medeiros MB, Lima VVF et al (2017) A population of Lychnophora ericoides Mart. (Arnica) (Asteraceae) is prone to extinction in a savanna of Central Brazil. Edinb J Bot 74:281–297
Robledo SM, Murillo J, Arbeláez N et al (2022) Therapeutic efficacy of Arnica in Hamsters with Cutaneous Leishmaniasis Caused by Leishmania braziliensis and L. tropica. Pharmaceuticals 15:1–19. https://doi.org/10.3390/ph15070776
Roman Junior WA, Piato AL, Conterato GMM et al (2015) Hypolipidemic effects of Solidago chilensis hydroalcoholic extract and its major isolated constituent quercetrin in cholesterol-fed rats. Pharm Biol 53:1488–1495. https://doi.org/10.3109/13880209.2014.989622
Sakamoto HT, Flausino D, Castellano EE et al (2003) Sesquiterpene Lactones from Lychnophora ericoides. J Nat Prod 66:693–695. https://doi.org/10.1021/np020314v
Santos MRA, Lima MR, Oliveira CLLG (2014) Plantas medicinais usadas em rondônia, Amazônia ocidental, Brasil. Revista Brasileira De Plantas Medicinais 16:707–720. https://doi.org/10.1590/1983-084X/13_102
Santos MD dos (2006) Lychnophora ericoides Mart.: avaliação farmacológica e considerações sobre o metabolismo oxidativo das substâncias bioativas. 140
Semir J, Rezende AR, Monge M et al (2012) As Arnicas endêmicas das Serras do Brasil: Uma visão sobre a biologia e a química das espécies de Lychnophora (Asteraceae). 1:212
Semir J (1991) Revisão taxonômica de Lychnophora Mart.(Vernoniaeae: Compositae) (Dissertação de doutorado, [sn], Universidade Estadual de Campinas)
Shaik AM, David Raju M, Rama Sekhara Reddy D (2020) Green synthesis of zinc oxide nanoparticles using aqueous root extract of Sphagneticola trilobata Lin and investigate its role in toxic metal removal, sowing germination and fostering of plant growth. Inorg Nano-Metal Chem 50:569–579. https://doi.org/10.1080/24701556.2020.1722694
Silva DB, Turatti ICC, Gouveia DR et al (2014) Mass spectrometry of flavonoid vicenin-2, based sunlight barriers in Lychnophora species. Sci Rep 4:4309. https://doi.org/10.1038/srep04309
Silva RF, Rezende CM, Pereira JB et al (2015b) Scents from Brazilian Cerrado: chemical composition of the essential oil from Pseudobrickellia brasiliensis (Asteraceae). J Essent Oil Res 27:417–420. https://doi.org/10.1080/10412905.2015.1037021
Silva GHL da (2016) Estudos taxonômicos do gênero Calea L (Asteraceae: Neurolaeneae ) na região Centro-Oeste do Brasil Estudos taxonômicos do gênero Calea L ( Asteraceae: Neurolaeneae ) na região Centro-Oeste do Brasil
Silveira D, Wagner H, Chiari E et al (2005) Biological activity of the aqueous extract of Lychnophora pinaster Mart. Rev Bras 15:294–297. https://doi.org/10.1590/s0102-695x2005000400006
Souza MC, Siani AC, Ramos MFS et al (2003) Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Pharmazie 58:582–586
Souza DMFDE, Sá RD, Araújo EL, Randau KP (2018) Anatomical, phytochemical and histochemical study of Solidago chilensis Meyen. An Acad Bras Ciênc 90:2107–2120
Souza FO de (2007) Asteraceae no Parque Estadual da Ilha do Cardoso, Cananéia, SP. Instituto de Botânica da Secretaria de Estado do Meio Ambiente
Steinhoff B (2019) Quality of herbal medicinal products: state of the art of purity assessment. Phytomedicine 60:153003. https://doi.org/10.1016/j.phymed.2019.153003
Sun L, Wang Z, Wang Y et al (2020) Anti-proliferative and anti-neuroinflammatory eudesmanolides from Wedelia (Sphagneticola trilobata (L.) Pruski). Fitoterapia 142:104452. https://doi.org/10.1016/j.fitote.2019.104452
Takahashi HT, Novello CR, Ueda-Nakamura T et al (2011) Thiophene derivatives with antileishmanial activity isolated from aerial parts of Porophyllum ruderale (Jacq.) Cass. Molecules 16:3469–3478
Takahashi HT, Britta EA, Longhini R et al (2013) Antileishmanial activity of 5-methyl-2,2′: 5′,2″-terthiophene isolated from Porophyllum ruderale is related to mitochondrial dysfunction in Leishmania amazonensis. Planta Med 79:330–333. https://doi.org/10.1055/s-0032-1328258
Tamura EK, Jimenez RS, Waismam K et al (2009) Inhibitory effects of Solidago chilensis Meyen hydroalcoholic extract on acute inflammation. J Ethnopharmacol 122:478–485. https://doi.org/10.1016/j.jep.2009.01.029
Tana IDT, Saúde-Guimarães DA, Caldeira TG et al (2022) Biopharmaceutics studies applied to goyazensolide: a drug candidate from Lychnophora species. J Pharm Pharmacol 74:1140–1151. https://doi.org/10.1093/jpp/rgac020
Torres VNR (2014) Avaliação fitoquímica, citotóxica e farmacológica de Calea uniflora LESS (Mestrado Universidade do Extremo Sul de Santa Catarina)
Trojan-Rodrigues M, Alves TLS, Soares GLG, Ritter MR (2012) Plants used as antidiabetics in popular medicine in Rio Grande do Sul, southern Brazil. J Ethnopharmacol 139:155–163. https://doi.org/10.1016/j.jep.2011.10.034
Truiti MDCT, Sarragiotto MH (1998) Three 5-methylcoumarins from Chaptalia nutans. Phytochemistry 47:97–99. https://doi.org/10.1016/S0031-9422(97)00524-4
Truiti MDCT, Sarragiotto MH, De Abreu Filho BA et al (2003) In vitro antibacterial activity of a 7-O-β-d-glucopyranosylnutanocoumarin from Chaptalia nutans (Asteraceae). Mem Inst Oswaldo Cruz 98:283–286. https://doi.org/10.1590/S0074-02762003000200020
Valverde SS, de Oliveira TB, de Souza SP (2012) Solidago chilensis Meyen (Asteraceae). Revista Fitos 7:131
Valverde SS, Santos BCS, de Oliveira TB et al (2021) Solidagenone from Solidago chilensis Meyen inhibits skin inflammation in experimental models. Basic Clin Pharmacol Toxicol 128:91–102. https://doi.org/10.1111/bcpt.13479
Valverde SS, de Souza SP, de Oliveira TB et al (2020) Pharmacognosy Chemical composition and antinociceptive activity of volatile fractions of the aerial parts of Solidago chilensis (Compositae) Abstract Thirty-six compounds were identified from aerial parts of Solidago chilensis cultivated at PAF/FIOCRU
Vanessa NR-T, Jéssica DM, de Luan SR et al (2016) Phytochemical investigation, antinociceptive activity and cytotoxicity of crude extracts of Calea uniflora Less. J Med Plants Res 10:695–704. https://doi.org/10.5897/jmpr2016.6094
Vasconcelos JF, Santos IP, de Oliveira TB et al (2022) The protective effect of solidagenone from Solidago chilensis Meyen in a mouse model of airway inflammation. Basic Clin Pharmacol Toxicol 130:44–55. https://doi.org/10.1111/bcpt.13672
Verma RS, Padalia RC, Chauhan A et al (2014) Essential oil composition of Sphagneticola trilobata (L.) Pruski from India. J Essen Oil Res 26:29–33. https://doi.org/10.1080/10412905.2013.822431
Vila R, Mundina M, Tomi F et al (2002) Composition and antifungal activity of the essential oil of Solidago chilensis. Planta Med 68:164–167
Zank S, Hanazaki N (2012) Exploring the links between ethnobotany, local therapeutic practices, and protected areas in Santa Catarina Coastline, Brazil. Evid Based Complement Altern Med: Ecam. https://doi.org/10.1155/2012/563570
Zwicker P, Schultze N, Niehs S et al (2017) Differential effects of Helenalin, an anti-inflammatory sesquiterpene lactone, on the proteome, metabolome and the oxidative stress response in several immune cell types. Toxicol in Vitro 40:45–54. https://doi.org/10.1016/j.tiv.2016.12.010