Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nhóm Brauer của không gian mô-đun của các torsor dưới sơ đồ nhóm Bruhat–Tits $$\varvec{\mathcal {G}}$$ trên một đường cong
Tóm tắt
Giả sử $$X$$ là một đường cong thuần nhất chính quy trên $${\mathbb {C}}$$. Chúng tôi tính toán nhóm Brauer của không gian mô-đun $${\mathcal {M}}_X({\mathcal {G}})$$ của các torsor nhóm Bruhat–Tits $$\mathcal {G}$$. Gọi $$M^{rs}_X({\mathcal {G}})$$ là miền ổn định thường xuyên của không gian mô-đun thô của các torsor $$\mathcal {G}$$ nửa ổn định. Khi $$g(X) \ge 3$$, chúng tôi tính toán nhân của $$Br(M^{rs}_X({\mathcal {G}})) \rightarrow Br({\mathcal {M}}_X({\mathcal {G}}))$$.
Từ khóa
#Nhóm Brauer #không gian mô-đun #torsor #sơ đồ nhóm #đường cong #Bruhat–TitsTài liệu tham khảo
Artin J-L V and Grothendieck A, Séminaire de Géométrie Algébrique du Bois Marie, 1963–64, Théorie des topos et cohomologie étale des schémas – (SGA 4), vol. 3, Lecture Notes in Mathematics (in French), vol. 305 (1972) (Berlin, New York: Springer Verlag)
citation_journal_title=J. Algebraic Geom.; citation_title=Moduli of parahoric
-torsors on a compact Riemann surface; citation_author=V Balaji, CS Seshadri; citation_volume=24; citation_issue=1; citation_publication_date=2015; citation_pages=1-49; citation_doi=10.1090/S1056-3911-2014-00626-3; citation_id=CR2
citation_journal_title=C. R. Math. Acad. Sci. Paris; citation_title=Brauer obstruction for a universal vector bundle; citation_author=V Balaji, I Biswas, O Gabber, DS Nagaraj; citation_volume=345; citation_issue=5; citation_publication_date=2007; citation_pages=265-268; citation_doi=10.1016/j.crma.2007.07.011; citation_id=CR3
Balaji V, Biswas I and Pandey Y, Connections on parahoric torsors on curves, Publ. Res. Inst. Math. Sci. (2017) 551–585
citation_journal_title=J. K-theory K-theory Appl. Algebra Geom. Topol.; citation_title=Brauer group of a moduli space of parabolic vector bundles over a curve; citation_author=I Biswas, A Dey; citation_volume=8; citation_issue=11; citation_publication_date=2011; citation_pages=437-449; citation_id=CR5
citation_journal_title=Documenta Mathematica; citation_title=The line bundles on moduli stacks of principal bundles on a curve; citation_author=I Biswas, N Hoffmann; citation_volume=15; citation_publication_date=2010; citation_pages=35-72; citation_id=CR6
citation_journal_title=Math. Ann.; citation_title=Poincaré families of
-bundles on a curve; citation_author=I Biswas, N Hoffmann; citation_volume=352; citation_issue=1; citation_publication_date=2012; citation_pages=133-154; citation_doi=10.1007/s00208-010-0628-x; citation_id=CR7
citation_journal_title=J. Reine Angew. Math.; citation_title=Brauer group of moduli of principal bundles over a curve; citation_author=I Biswas, YI Holla; citation_volume=677; citation_publication_date=2013; citation_pages=225-249; citation_id=CR8
citation_journal_title=Commentarii Mathematici Helvetici; citation_title=Les sous-groupes fermés de rang maximum des groupes de lie clos; citation_author=A Borel, J Siebenthal; citation_volume=23; citation_publication_date=1949; citation_pages=200-221; citation_doi=10.1007/BF02565599; citation_id=CR9
citation_journal_title=Inst. Hautes Études Sci. Publ. Math.; citation_title=Groupes réductifs sur un corps local; citation_author=F Bruhat, J Tits; citation_volume=41; citation_publication_date=1972; citation_pages=5-251; citation_doi=10.1007/BF02715544; citation_id=CR10
citation_journal_title=Inst. Hautes Études Sci. Publ. Math.; citation_title=Groupes réductifs sur un corps local. II. Schémas en groupes, Existence d’une donnée radicielle valuée; citation_author=F Bruhat, J Tits; citation_volume=60; citation_publication_date=1984; citation_pages=197-376; citation_doi=10.1007/BF02700560; citation_id=CR11
Conrad B, Cohomological descent, math.stanford.edu/ conrad/papers/hypercover.pdf
de Jong A J, A result of gabber,
http://www.math.columbia.edu/dejong/papers/2-gabber.pdf
citation_journal_title=Inventiones Mathematicae; citation_title=Groupe de picard des variétés de modules de fibrés semi-stables sur les courbes algéébriques; citation_author=J-M Drezet, MS Narasimhan; citation_volume=97; citation_issue=1; citation_publication_date=1989; citation_pages=53-94; citation_doi=10.1007/BF01850655; citation_id=CR14
citation_journal_title=J. European Math. Soc.; citation_title=Algebraic loop groups and moduli spaces of bundles; citation_author=G Faltings; citation_volume=5; citation_issue=1; citation_publication_date=2003; citation_pages=41-68; citation_doi=10.1007/s10097-002-0045-x; citation_id=CR15
Giraud J, Analysis Situs [reprint of MR0193122], In: Dix exposés sur la cohomologie des schémas, volume 3 of Adv. Stud. Pure Math. (1968) (Amsterdam: North-Holland) pp. 1–11
Giraud J, Cohomologie non abélienne (1971) (Berlin-New York: Springer-Verlag) Die Grundlehren der mathematischen Wissenschaften, Band 179
Grothendieck A, Le groupe de Brauer III: Exemples et Complements, in: Dix exposés sur la cohomologie des schémas, volume 3 of Adv. Stud. Pure Math. (1968) (Amsterdam: North-Holland) pp. 88–188
citation_journal_title=Math. Ann.; citation_title=Uniformization of
-bundles; citation_author=J Heinloth; citation_volume=347; citation_issue=3; citation_publication_date=2010; citation_pages=499-528; citation_doi=10.1007/s00208-009-0443-4; citation_id=CR19
https://stacks.math.columbia.edu/download/sites-cohomology.pdf
citation_title=Infinite-dimensional Lie algebras; citation_publication_date=1990; citation_id=CR21; citation_author=VG Kac; citation_publisher=Cambridge University Press
Kumar S, Infinite grassmannians and moduli spaces of
$$G$$
-bundles. Vector Bundles on Curves – New Directions, edited by M. S. Narasimhan, Springer Lecture Notes in Math., vol. 1649 (1997) pp. 1–49
Kumar S, Kac–Moody groups, their flag varieties and representation theory, volume 204 of Progress in Mathematics (2002) (Boston, MA: Birkhäuser Boston Inc.)
citation_journal_title=Ann. Sci. École Norm. Sup. (4); citation_title=The line bundles on the moduli of parabolic
-bundles over curves and their sections; citation_author=Y Laszlo, C Sorger; citation_volume=30; citation_issue=4; citation_publication_date=1997; citation_pages=499-525; citation_doi=10.1016/S0012-9593(97)89929-6; citation_id=CR24
Laumon G and Moret-Bailly L, Champs algébriques, volume 39 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas, 3rd Series, A Series of Modern Surveys in Mathematics] (2000) (Berlin: Springer-Verlag)
Merkurjev A S, A seven-term sequence in the Galois theory of schemes. Mat. Sb. (N.S.) 109(151)(3) (1979) 395–409, 479
Milne J S, Étale cohomology, volume 33 of Princeton Mathematical Series (1980) (Princeton, N.J.: Princeton University Press)
citation_journal_title=J. Reine Angew. Math.; citation_title=Sheaves on Artin stacks; citation_author=M Olsson; citation_volume=603; citation_publication_date=2007; citation_pages=55-112; citation_id=CR28
Pappas G and Rapoport M, Twisted loop groups and their affine flag varieties, Adv. Math. 219(1) (2008) 118–198, with an Appendix by T. Haines and M. Rapoport
Pappas G and Rapoport M, Some questions about
$${\cal{G}}$$
-bundles on curves, in: Algebraic and Arithmetic Structures of Moduli Spaces (Sapporo 2007), Tokyo, Japan (2010) (Mathematical Society of Japan) pp. 159–171
Parameshwaran A J and Pandey Y, Étale fundamental group of moduli of torsors under Bruhat–Tits group scheme on a curve,
arXiv:1911.02861
citation_journal_title=Ann. Sci. École Norm. Sup. (4); citation_title=On moduli of
-bundles on a curve for exceptional
; citation_author=C Sorger; citation_volume=32; citation_publication_date=1999; citation_pages=127-133; citation_doi=10.1016/S0012-9593(99)80011-1; citation_id=CR32
citation_title=Linear algebraic groups, Modern Birkhäuser Classics; citation_publication_date=2009; citation_id=CR33; citation_author=TA Springer; citation_publisher=Birkhäuser Boston Inc.
Tamme G, Introduction to étale cohomology, Universitext (1994) (Berlin: Springer-Verlag) translated from German by Manfred Kolster
citation_journal_title=Invent. Math.; citation_title=Borel–Weil–Bott theory on the moduli stack of
-bundles over a curve; citation_author=C Teleman; citation_volume=134; citation_issue=1; citation_publication_date=1998; citation_pages=1-57; citation_doi=10.1007/s002220050257; citation_id=CR35
citation_journal_title=J. Algebra; citation_title=Strongly inner anisotropic forms of simple algebraic groups; citation_author=J Tits; citation_volume=131; citation_issue=2; citation_publication_date=1990; citation_pages=648-677; citation_doi=10.1016/0021-8693(90)90201-X; citation_id=CR36
citation_journal_title=Ann. Math. (2); citation_title=On the coherence conjecture of Pappas and Rapoport; citation_author=X Zhu; citation_volume=180; citation_issue=1; citation_publication_date=2014; citation_pages=1-85; citation_doi=10.4007/annals.2014.180.1.1; citation_id=CR37
