Nhóm Brauer của không gian mô-đun của các torsor dưới sơ đồ nhóm Bruhat–Tits $$\varvec{\mathcal {G}}$$ trên một đường cong

Proceedings - Mathematical Sciences - Tập 132 Số 2 - Trang 1-59 - 2022
Pandey, Yashonidhi1
1Indian Institute of Science Education and Research, Manauli, India

Tóm tắt

Giả sử $$X$$ là một đường cong thuần nhất chính quy trên $${\mathbb {C}}$$. Chúng tôi tính toán nhóm Brauer của không gian mô-đun $${\mathcal {M}}_X({\mathcal {G}})$$ của các torsor nhóm Bruhat–Tits $$\mathcal {G}$$. Gọi $$M^{rs}_X({\mathcal {G}})$$ là miền ổn định thường xuyên của không gian mô-đun thô của các torsor $$\mathcal {G}$$ nửa ổn định. Khi $$g(X) \ge 3$$, chúng tôi tính toán nhân của $$Br(M^{rs}_X({\mathcal {G}})) \rightarrow Br({\mathcal {M}}_X({\mathcal {G}}))$$.

Từ khóa

#Nhóm Brauer #không gian mô-đun #torsor #sơ đồ nhóm #đường cong #Bruhat–Tits

Tài liệu tham khảo

Artin J-L V and Grothendieck A, Séminaire de Géométrie Algébrique du Bois Marie, 1963–64, Théorie des topos et cohomologie étale des schémas – (SGA 4), vol. 3, Lecture Notes in Mathematics (in French), vol. 305 (1972) (Berlin, New York: Springer Verlag) citation_journal_title=J. Algebraic Geom.; citation_title=Moduli of parahoric -torsors on a compact Riemann surface; citation_author=V Balaji, CS Seshadri; citation_volume=24; citation_issue=1; citation_publication_date=2015; citation_pages=1-49; citation_doi=10.1090/S1056-3911-2014-00626-3; citation_id=CR2 citation_journal_title=C. R. Math. Acad. Sci. Paris; citation_title=Brauer obstruction for a universal vector bundle; citation_author=V Balaji, I Biswas, O Gabber, DS Nagaraj; citation_volume=345; citation_issue=5; citation_publication_date=2007; citation_pages=265-268; citation_doi=10.1016/j.crma.2007.07.011; citation_id=CR3 Balaji V, Biswas I and Pandey Y, Connections on parahoric torsors on curves, Publ. Res. Inst. Math. Sci. (2017) 551–585 citation_journal_title=J. K-theory K-theory Appl. Algebra Geom. Topol.; citation_title=Brauer group of a moduli space of parabolic vector bundles over a curve; citation_author=I Biswas, A Dey; citation_volume=8; citation_issue=11; citation_publication_date=2011; citation_pages=437-449; citation_id=CR5 citation_journal_title=Documenta Mathematica; citation_title=The line bundles on moduli stacks of principal bundles on a curve; citation_author=I Biswas, N Hoffmann; citation_volume=15; citation_publication_date=2010; citation_pages=35-72; citation_id=CR6 citation_journal_title=Math. Ann.; citation_title=Poincaré families of -bundles on a curve; citation_author=I Biswas, N Hoffmann; citation_volume=352; citation_issue=1; citation_publication_date=2012; citation_pages=133-154; citation_doi=10.1007/s00208-010-0628-x; citation_id=CR7 citation_journal_title=J. Reine Angew. Math.; citation_title=Brauer group of moduli of principal bundles over a curve; citation_author=I Biswas, YI Holla; citation_volume=677; citation_publication_date=2013; citation_pages=225-249; citation_id=CR8 citation_journal_title=Commentarii Mathematici Helvetici; citation_title=Les sous-groupes fermés de rang maximum des groupes de lie clos; citation_author=A Borel, J Siebenthal; citation_volume=23; citation_publication_date=1949; citation_pages=200-221; citation_doi=10.1007/BF02565599; citation_id=CR9 citation_journal_title=Inst. Hautes Études Sci. Publ. Math.; citation_title=Groupes réductifs sur un corps local; citation_author=F Bruhat, J Tits; citation_volume=41; citation_publication_date=1972; citation_pages=5-251; citation_doi=10.1007/BF02715544; citation_id=CR10 citation_journal_title=Inst. Hautes Études Sci. Publ. Math.; citation_title=Groupes réductifs sur un corps local. II. Schémas en groupes, Existence d’une donnée radicielle valuée; citation_author=F Bruhat, J Tits; citation_volume=60; citation_publication_date=1984; citation_pages=197-376; citation_doi=10.1007/BF02700560; citation_id=CR11 Conrad B, Cohomological descent, math.stanford.edu/ conrad/papers/hypercover.pdf de Jong A J, A result of gabber, http://www.math.columbia.edu/dejong/papers/2-gabber.pdf citation_journal_title=Inventiones Mathematicae; citation_title=Groupe de picard des variétés de modules de fibrés semi-stables sur les courbes algéébriques; citation_author=J-M Drezet, MS Narasimhan; citation_volume=97; citation_issue=1; citation_publication_date=1989; citation_pages=53-94; citation_doi=10.1007/BF01850655; citation_id=CR14 citation_journal_title=J. European Math. Soc.; citation_title=Algebraic loop groups and moduli spaces of bundles; citation_author=G Faltings; citation_volume=5; citation_issue=1; citation_publication_date=2003; citation_pages=41-68; citation_doi=10.1007/s10097-002-0045-x; citation_id=CR15 Giraud J, Analysis Situs [reprint of MR0193122], In: Dix exposés sur la cohomologie des schémas, volume 3 of Adv. Stud. Pure Math. (1968) (Amsterdam: North-Holland) pp. 1–11 Giraud J, Cohomologie non abélienne (1971) (Berlin-New York: Springer-Verlag) Die Grundlehren der mathematischen Wissenschaften, Band 179 Grothendieck A, Le groupe de Brauer III: Exemples et Complements, in: Dix exposés sur la cohomologie des schémas, volume 3 of Adv. Stud. Pure Math. (1968) (Amsterdam: North-Holland) pp. 88–188 citation_journal_title=Math. Ann.; citation_title=Uniformization of -bundles; citation_author=J Heinloth; citation_volume=347; citation_issue=3; citation_publication_date=2010; citation_pages=499-528; citation_doi=10.1007/s00208-009-0443-4; citation_id=CR19 https://stacks.math.columbia.edu/download/sites-cohomology.pdf citation_title=Infinite-dimensional Lie algebras; citation_publication_date=1990; citation_id=CR21; citation_author=VG Kac; citation_publisher=Cambridge University Press Kumar S, Infinite grassmannians and moduli spaces of $$G$$ -bundles. Vector Bundles on Curves – New Directions, edited by M. S. Narasimhan, Springer Lecture Notes in Math., vol. 1649 (1997) pp. 1–49 Kumar S, Kac–Moody groups, their flag varieties and representation theory, volume 204 of Progress in Mathematics (2002) (Boston, MA: Birkhäuser Boston Inc.) citation_journal_title=Ann. Sci. École Norm. Sup. (4); citation_title=The line bundles on the moduli of parabolic -bundles over curves and their sections; citation_author=Y Laszlo, C Sorger; citation_volume=30; citation_issue=4; citation_publication_date=1997; citation_pages=499-525; citation_doi=10.1016/S0012-9593(97)89929-6; citation_id=CR24 Laumon G and Moret-Bailly L, Champs algébriques, volume 39 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas, 3rd Series, A Series of Modern Surveys in Mathematics] (2000) (Berlin: Springer-Verlag) Merkurjev A S, A seven-term sequence in the Galois theory of schemes. Mat. Sb. (N.S.) 109(151)(3) (1979) 395–409, 479 Milne J S, Étale cohomology, volume 33 of Princeton Mathematical Series (1980) (Princeton, N.J.: Princeton University Press) citation_journal_title=J. Reine Angew. Math.; citation_title=Sheaves on Artin stacks; citation_author=M Olsson; citation_volume=603; citation_publication_date=2007; citation_pages=55-112; citation_id=CR28 Pappas G and Rapoport M, Twisted loop groups and their affine flag varieties, Adv. Math. 219(1) (2008) 118–198, with an Appendix by T. Haines and M. Rapoport Pappas G and Rapoport M, Some questions about $${\cal{G}}$$ -bundles on curves, in: Algebraic and Arithmetic Structures of Moduli Spaces (Sapporo 2007), Tokyo, Japan (2010) (Mathematical Society of Japan) pp. 159–171 Parameshwaran A J and Pandey Y, Étale fundamental group of moduli of torsors under Bruhat–Tits group scheme on a curve, arXiv:1911.02861 citation_journal_title=Ann. Sci. École Norm. Sup. (4); citation_title=On moduli of -bundles on a curve for exceptional ; citation_author=C Sorger; citation_volume=32; citation_publication_date=1999; citation_pages=127-133; citation_doi=10.1016/S0012-9593(99)80011-1; citation_id=CR32 citation_title=Linear algebraic groups, Modern Birkhäuser Classics; citation_publication_date=2009; citation_id=CR33; citation_author=TA Springer; citation_publisher=Birkhäuser Boston Inc. Tamme G, Introduction to étale cohomology, Universitext (1994) (Berlin: Springer-Verlag) translated from German by Manfred Kolster citation_journal_title=Invent. Math.; citation_title=Borel–Weil–Bott theory on the moduli stack of -bundles over a curve; citation_author=C Teleman; citation_volume=134; citation_issue=1; citation_publication_date=1998; citation_pages=1-57; citation_doi=10.1007/s002220050257; citation_id=CR35 citation_journal_title=J. Algebra; citation_title=Strongly inner anisotropic forms of simple algebraic groups; citation_author=J Tits; citation_volume=131; citation_issue=2; citation_publication_date=1990; citation_pages=648-677; citation_doi=10.1016/0021-8693(90)90201-X; citation_id=CR36 citation_journal_title=Ann. Math. (2); citation_title=On the coherence conjecture of Pappas and Rapoport; citation_author=X Zhu; citation_volume=180; citation_issue=1; citation_publication_date=2014; citation_pages=1-85; citation_doi=10.4007/annals.2014.180.1.1; citation_id=CR37