Brassinosteroids Regulate Grain Filling in Rice

Plant Cell - Tập 20 Số 8 - Trang 2130-2145 - 2008
Chuanyin Wu1, Anthony Trieu1, Parthiban Radhakrishnan1, Shing F. Kwok1, Sam Harris1, Ke Zhang1, Jiulin Wang2, Jianmin Wan2, Huqu Zhai2, Suguru Takatsuto3, Shogo Matsumoto4, Shozo Fujioka4, Kenneth A. Feldmann1, Roger I. Pennell1
1Ceres Inc., Thousand Oaks, California 91320
2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
3Department of Chemistry, Joetsu University of Education, Joetsu-shi, Niigata 943-8512, Japan
4Advanced Science Institute, RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama 351-0198, Japan

Tóm tắt

Abstract

Genes controlling hormone levels have been used to increase grain yields in wheat (Triticum aestivum) and rice (Oryza sativa). We created transgenic rice plants expressing maize (Zea mays), rice, or Arabidopsis thaliana genes encoding sterol C-22 hydroxylases that control brassinosteroid (BR) hormone levels using a promoter that is active in only the stems, leaves, and roots. The transgenic plants produced more tillers and more seed than wild-type plants. The seed were heavier as well, especially the seed at the bases of the spikes that fill the least. These phenotypic changes brought about 15 to 44% increases in grain yield per plant relative to wild-type plants in greenhouse and field trials. Expression of the Arabidopsis C-22 hydroxylase in the embryos or endosperms themselves had no apparent effect on seed weight. These results suggested that BRs stimulate the flow of assimilate from the source to the sink. Microarray and photosynthesis analysis of transgenic plants revealed evidence of enhanced CO2 assimilation, enlarged glucose pools in the flag leaves, and increased assimilation of glucose to starch in the seed. These results further suggested that BRs stimulate the flow of assimilate. Plants have not been bred directly for seed filling traits, suggesting that genes that control seed filling could be used to further increase grain yield in crop plants.

Từ khóa


Tài liệu tham khảo

2005, Science, 309, 741, 10.1126/science.1113373

1998, Plant Cell, 10, 219, 10.1105/tpc.10.2.219

2008, Genes Dev., 22, 810, 10.1101/gad.462608

1995, J. R. Stat. Soc. B, 57, 289

2001, Plant Cell, 13, 495, 10.1105/tpc.13.3.495

1998, Eur. J. Biochem., 256, 88, 10.1046/j.1432-1327.1998.2560088.x

1998, Plant Physiol., 118, 59, 10.1104/pp.118.1.59

1998, Plant Cell, 10, 231

2001, Plant J., 26, 573, 10.1046/j.1365-313x.2001.01055.x

2002, Plant J., 29, 681, 10.1046/j.1365-313X.2002.01257.x

2007, Ann. Bot. (Lond.), 100, 941, 10.1093/aob/mcm040

2001, Plant Physiol., 126, 883, 10.1104/pp.126.2.883

1991, 306

1996, Plant Cell Physiol., 37, 1201, 10.1093/oxfordjournals.pcp.a029074

2002, Plant Physiol., 130, 930, 10.1104/pp.008722

2003, Annu. Rev. Plant Biol., 54, 137, 10.1146/annurev.arplant.54.031902.134921

2006, Plant J., 45, 765, 10.1111/j.1365-313X.2005.02639.x

2005, Photochem. Photobiol. Sci., 4, 1065, 10.1039/b506625e

1994, Plant J., 6, 271, 10.1046/j.1365-313X.1994.6020271.x

2005, Plant Cell, 17, 2243, 10.1105/tpc.105.030973

2000, J. Exp. Bot., 51, 475, 10.1093/jexbot/51.suppl_1.475

2006, J. Am. Oil Chem. Soc., 82, 439

2002, Biochim. Biophys. Acta, 1576, 53, 10.1016/S0167-4781(02)00292-0

2005, Plant J., 41, 779, 10.1111/j.1365-313X.2005.02339.x

2004, Plant Physiol., 134, 912, 10.1104/pp.103.036053

1998, Proc. Natl. Acad. Sci. USA, 95, 1933, 10.1073/pnas.95.4.1933

2005, Proc. Natl. Acad. Sci. USA, 102, 11118, 10.1073/pnas.0503410102

2005, J. Exp. Bot., 56, 2433, 10.1093/jxb/eri236

2003, Nature, 422, 618, 10.1038/nature01518

2001, Methods, 25, 402, 10.1006/meth.2001.1262

2005, Proc. Natl. Acad. Sci. USA, 102, 11934, 10.1073/pnas.0505266102

2006, Plant Physiol., 141, 924, 10.1104/pp.106.077081

2002, Plant Physiol., 129, 1241, 10.1104/pp.011003

2002, Cell, 110, 203, 10.1016/S0092-8674(02)00814-0

2006, Cell, 126, 467, 10.1016/j.cell.2006.05.050

2004, PLoS Biol., 2, e258, 10.1371/journal.pbio.0020258

1999, Plant Physiol., 121, 743, 10.1104/pp.121.3.743

1999, Nature, 400, 256, 10.1038/22307

1997, J. Agric. Sci., 128, 405, 10.1017/S0021859697004322

2007, Plant J., 52, 1094, 10.1111/j.1365-313X.2007.03304.x

2007, Plant Cell Rep., 26, 1083, 10.1007/s00299-007-0309-8

2004, Curr. Opin. Biotechnol., 15, 144, 10.1016/j.copbio.2004.02.003

2005, Nat. Biotechnol., 24, 105

2002, Nature, 416, 701, 10.1038/416701a

2003, Plant Physiol., 133, 1111, 10.1104/pp.103.021527

2006, Development, 133, 251, 10.1242/dev.02194

2007, J. Exp. Bot., 58, 3155, 10.1093/jxb/erm153

2001, Plant Physiol., 126, 770, 10.1104/pp.126.2.770

2006, Plant Cell, 18, 2635, 10.1105/tpc.106.044594

1991, Plant Cell, 3, 647, 10.2307/3869246

2002, Proc. Natl. Acad. Sci. USA, 99, 1724, 10.1073/pnas.022635299

1986, Crop Sci., 26, 469, 10.2135/cropsci1986.0011183X002600030006x

2005, Bioinformatics, 21, 2067, 10.1093/bioinformatics/bti270

2004, Plant Physiol., 135, 2196, 10.1104/pp.104.043034

1996, Cell, 85, 171, 10.1016/S0092-8674(00)81094-6

2003, Plant J., 33, 513, 10.1046/j.1365-313X.2003.01648.x

2005, Plant Cell, 17, 776, 10.1105/tpc.104.024950

2000, Plant Sci., 156, 201, 10.1016/S0168-9452(00)00255-7

2003, Plant Physiol., 132, 556, 10.1104/pp.103.021253

2000, Plant Physiol., 124, 105, 10.1104/pp.124.1.105

2006, Proc. Natl. Acad. Sci. USA, 103, 14631, 10.1073/pnas.0606385103

1998, Plant Cell Physiol., 39, 885, 10.1093/oxfordjournals.pcp.a029449

1995, Plant Mol. Biol., 28, 455, 10.1007/BF00020394

2007, 195

1992, 298

2004, J. Exp. Bot., 55, 1135, 10.1093/jxb/erh124

1994, Genes Dev., 8, 2110, 10.1101/gad.8.17.2110

2005, Planta, 222, 604, 10.1007/s00425-005-0007-0

2006, Plant J., 48, 687, 10.1111/j.1365-313X.2006.02916.x