Branched-Chain Amino Acid-Containing Dipeptides, Identified from Whey Protein Hydrolysates, Stimulate Glucose Uptake Rate in L6 Myotubes and Isolated Skeletal Muscles

Journal of Nutritional Science and Vitaminology - Tập 55 Số 1 - Trang 81-86 - 2009
Masashi Morifuji1,2, Jinichiro Koga1, Kentaro Kawanaka3, Mitsuru Higuchi4
1Food and Health R&D Laboratories, Meiji Seika Kaisha Ltd.
2Graduate school of Sport Sciences, Waseda University
3Depatment of Health and Nutrition, Niigata University of Health and Welfare
4Faculty of Sport Sciences, Waseda University

Tóm tắt

Từ khóa


Tài liệu tham khảo

1) Ivy JL, Holloszy JO. 1981. Persistent increase in glucose uptake by rat skeletal muscle following exercise. Am J Physiol 241: C200-203.

2) James DE, Kraegen EW, Chisholm DJ. 1985. Muscle glucose metabolism in exercising rats: comparison with insulin stimulation. Am J Physiol 248: E575-580.

3) Holloszy JO, Narahara HT. 1965. Studies of tissue permeability. X. Changes in permeability to 3-methylglucose associated with contraction of isolated frog muscle. J Biol Chem 240: 3493-3500.

4) Nesher R, Karl IE, Kipnis DM. 1985. Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol 249: C226-232.

10.2337/diacare.7.5.416

6) Rodgers MW, Peake-Godin H. 1988. Implementing faculty practice in an atmosphere of retrenchment. J Nurs Educ 27: 87-88.

7) Hughes VA, Fiatarone MA, Fielding RA, Kahn BB, Ferrara CM, Shepherd P, Fisher EC, Wolfe RR, Elahi D, Evans WJ. 1993. Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Physiol 264: E855-862.

8) Zierath JR. 2002. Invited review: Exercise training-induced changes in insulin signaling in skeletal muscle. J Appl Physiol 93: 773-781.

10.1146/annurev.med.49.1.235

10) Morifuji M, Sakai K, Sanbongi C, Sugiura K. 2005. Dietary whey protein downregulates fatty acid synthesis in the liver, but upregulates it in skeletal muscle of exercise-trained rats. Nutrition 21: 1052-1058.

10.1079/BJN20051373

12) Morifuji M, Sakai K, Sugiura K. 2005. Dietary whey protein modulates liver glycogen level and glycoregulatory enzyme activities in exercise-trained rats. Exp Biol Med (Maywood) 230: 23-30.

13) Zawadzki KM, Yaspelkis BB, Ivy JL. 1992. Carbohydrate-protein complex increases the rate of muscle glycogen-storage after exercise. J Appl Physiol 72: 1854-1867.

10.1016/S0006-291X(02)02717-1

10.1172/JCI106724

16) Adibi SA, Morse EL, Masilamani SS, Amin PM. 1975. Evidence for two different modes of tripeptide disappearance in human intestine. Uptake by peptide carrier systems and hydrolysis by peptide hydrolases. J Clin Invest 56: 1355-1363.

17) Fei YJ, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF, Singh SK, Boron WF, Hediger MA. 1994. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368: 563-566.

FEI Y-J, 2000, 1492, 145

FOLTZ MARTIN, 2007, 137, 953, 10.1093/jn/137.4.953

10.1016/j.ab.2005.12.011

21) Sumitani S, Goya K, Testa JR, Kouhara H, Kasayama S. 2002. Akt1 and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts. Endocrinology 143: 820-828.

10.1083/jcb.144.3.413

23) Kawanaka K, Tabata I, Tanaka A, Higuchi M. 1998. Effects of high-intensity intermittent swimming on glucose transport in rat epitrochlearis muscle. J Appl Physiol 84: 1852-1857.

24) Ueyama A, Sato T, Yoshida H, Magata K, Koga N. 2000. Nonradioisotope assay of glucose uptake activity in rat skeletal muscle using enzymatic measurement of 2-deoxyglucose 6-phosphate in vitro and in vivo. Biol Signals Recept 9: 267-274.

25) Hansen PA, Gulve EA, Holloszy JO. 1994. Suitability of 2-deoxyglucose for in vitro measurement of glucose transport activity in skeletal muscle. J Appl Physiol 76: 979-985.

10.1074/jbc.M010599200

10.1016/0003-2697(74)90248-6

10.1016/j.bbrc.2003.11.039

29) Holloszy J, Hansen P. 1996. Regulation of glucose transport into skeletal muscle. In: Reviews of Physiology, Biochemistry and Pharmacology (Blaustein MP, Grunicke H, Habermann E, Pette D, Schultz G, Schweiger M, eds), p 99-193. Springer Verlag, Berlin.

WANG Q, 1999, 19, 4008, 10.1128/MCB.19.6.4008

31) Condorelli G, Vigliotta G, Trencia A, Maitan MA, Caruso M, Miele C, Oriente F, Santopietro S, Formisano P, Beguinot F. 2001. Protein kinase C (PKC)-alpha activation inhibits PKC-zeta and mediates the action of PED/PEA-15 on glucose transport in the L6 skeletal muscle cells. Diabetes 50: 1244-1252.

32) Bandyopadhyay G, Kanoh Y, Sajan MP, Standaert ML, Farese RV. 2000. Effects of adenoviral gene transfer of wild-type, constitutively active, and kinase-defective protein kinase C-lambda on insulin-stimulated glucose transport in L6 myotubes. Endocrinology 141: 4120-4127.

33) Farese RV. 2002. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab 283: E1-E11.

34) Peyrollier K, Hajduch E, Blair AS, Hyde R, Hundal HS. 2000. <small>L</small>-Leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the <small>L</small>-leucine-induced up-regulation of system A amino acid transport. Biochem J 350 (Pt 2): 361-368.

35) Greiwe JS, Kwon G, McDaniel ML, Semenkovich CF. 2001. Leucine and insulin activate p70 S6 kinase through different pathways in human skeletal muscle. Am J Physiol Endocrinol Metab 281: E466-471.

10.1093/nar/17.16.6739

10.1016/0378-1119(87)90371-4

1987, 21, 255

DOI MASAKO, 2005, 135, 2103, 10.1093/jn/135.9.2103

10.1074/jbc.M004812200