Brain-metastatic melanoma: a neurotrophic perspective
Tóm tắt
Từ khóa
Tài liệu tham khảo
Prados M, Wilson C: Neoplasms of the central nervous system. In: Holland, J.F., Frei, III.E., Bast, Jr. R.C., Kufe, D.W., Morton, D.L., Weischselbaum, R.R. (Eds.),Cancer Medicine. Philadelphia: Lea & Febiger, pp. 1080–1119, 1993.
Sawaya R, Ligon, BL, Bindal, AK, et al.: Surgical treatment of metastatic brain tumors. J. Neurooncol 27: 269–277, 1996.
Steck, P, andNicolson G: Metastasis to the central nervous system. In: Levine, A., Schmidek, H. (Eds.), Molecular Genetics of Nervous System Tumors. New York: Wiley and Sons, pp. 371–379, 1993
Fidler IJ: The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Rew Cancer 3: 1–6, 2003.
Nicolson GL, Menter DG, Herrmann, JL, et al.: Brain metastasis: role of trophic, autocrine, and paracrine factors in tumor invasion and colonization of the central nervous system. Curr Top Microbiol Immunol 213: 89–115, 1996.
Yano S, Shinohara H, Herbst RS, et al.: Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res 60: 4959–4967, 2000.
Albino AP, Davis BM, andNanus DM: Induction of growth factor RNA expression in human malignant melanoma: markers of transformation. Cancer Res 51: 4815–4820, 1991.
Herlyn M, Thurin J, Balaban G, et al.: Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res 45: 5670–5676, 1985.
Bradshaw RA, Blundell TL, Lapatto R, et al.: Nerve growth factor revisited. Trends Biochem Sci 18: 48–52, 1993.
Lee R, Kermani P, Teng KK, andHempstead BL: Regulation of cell survival by secreted proneurotrophins. Science 294: 1945–1948, 2001.
Raff MC, Barres BA, Burne, JF, et al.: Programmed cell death and the control of cell survival.: lessons from the nervous system. Science 262: 695–700, 1993.
Snider WD: Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77, 627–638, 1994.
Jones KR, Farinas I, Backus C, andReichardt LF: Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76: 989–999, 1994.
DiCicco-Bloom E, Friedman, WJ andBlack IB: NT-3 stimulates sympathetic neuroblast proliferation by promoting precursor survival. Neuron 11: 1101–1111, 1993.
Johnson D, Lanahan, A, Buck, CR, et al.: Expression and structure of the human NGF receptor. Cell 47: 545–554, 1986.
Maher PA: Nerve growth factor induces protein-tyrosine phosphorylation. Proc Natl Acad Sci U.S.A. 85: 6788–6791, 1988.
Miyasaka T, Chao, MV Sherline P, andSaltiel AR: Nerve growth factor stimulates a protein kinase in PC-12 cells that phosphorylates microtubule-associated protein-2. J Biol Chem 265:4730–4735, 1990.
Ohmichi M, Decker SJ, andSaltiel AR: Nerve growth factor stimulates the tyrosine phosphorylation of a 38-kDa protein that specifically associates with the src homology domain of phospholipase C-gamma 1. J Biol Chem 267:21601–21606, 1992.
Barbacid M: Nerve growth factor: a tale of two receptors. Oncogene 8: 2033–2042, 1993.
Chao MV: Neurotrophins and their receptors: a convergence point for many signalling pathways. Nature Rev 4: 299–309, 2003.
Meakin SO, andShooter EM: The nerve growth factor family of receptors. Trends Neurosci 15: 323–331, 1992.
Saltiel AR, andDecker SJ: Cellular mechanisms of signal transduction for neurotrophins. Bioassays 16: 405–411, 1994.
Birren SJ, Lo L, andAnderson DJ: Sympathetic neuroblasts undergo a developmental switch in trophic dependence. Development 119: 597–610, 1993.
Kalcheim C, Carmeli C, andRosenthal A: Neurotrophin-3 is a mitogen for cultured neural crest cells. Proc Natl Acad Sci U.S.A. 89: 1661–1665, 1992.
Schnell L, Schneider R, Kolbeck R, et al.: Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367: 170–173, 1994.
Ernfors P, Lee KF, Kucera J, andJaenisch R: Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77: 503–512, 1994.
Klein R, Silos-Santiago I, Smeyne RJ, et al.: Disruption of the neurotrophin-3 receptor genetrkC eliminates la muscle afferents and results in abnormal movements. Nature 368:249–251, 1994.
Ernfors P, Lee KF, andJaenisch R: Mice lacking brainderived neurotrophic factor develop with sensory deficits. Nature 368: 147–150, 1994.
Klein R, Smeyne RJ, Wurst W, et al.: Targeted disruption of thetrkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75: 113–122, 1993.
Buchman VL, andDavies AM: Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 118: 989–1001, 1993.
Crowley C, Spencer SD, Nishimura MC, et al.: Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76:1001–1011, 1994.
Smeyne RJ, Klein R, Schnapp A, et al.: Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368: 246–249, 1994.
Peacocke M, Yaar M, Mansur CP, et al.: Induction of nerve growth factor receptors on cultured human melanocytes. Proc Natl Acad Sci U.S.A. 85: 5282–5286, 1988.
Yaar M, Eller MS, DiBenedetto P, et al.: Thetrk family of receptors mediates nerve growth factor and neurotrophin-3 effects in melanocytes. J Clin Invest 94: 1550–1562, 1994.
Yaar M, andGilchrest BA: Human melanocyte growth and differentiation: a decade of new data. J Invest Dermatol 97: 611–617, 1991.
Herrmann JL, Menter DG, Hamada J, et al.: Mediation of NGF-stimulated extracellular matrix invasion by the human melanoma low-affinity p75 neurotrophin receptor: melanoma p75 functions independently oftrkA. Mol Biol Cell 4: 1205–1216, 1993.
Marchetti D, Murry B, Galjour J, andWilke-Greiter A: Human melanoma TrkC: Its association with a purine-analog-sensitive kinase activity. J Cell Biochem 88: 865–872, 2003.
Bibel M, Hoppe E, andBarde, YA: Biochemical and functional interactions between the neurotrophin receptors Trk and p75NTR. EMBO J 18: 616–622, 1999.
Marchetti D, McQuillan DJ, Spohn WC, et al.: Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Cancer Res 56: 2856–2863, 1996.
Marchetti D, andNicolson GL: Human melanoma cell invasion: selected neurotrophin enhancement of invasion and heparanase activity. J Invest Dermatol Symp Proc 2: 99–105, 1997.
Marchetti D, andNicolson GL: Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Adv Enzyme Reg 37: 111–134, 1997.
Nicolson GL, Menter DG, Herrmann J, et al.: Tumor metastasis to brain: role of endothelial cells, neurotrophins, and paracrine growth factors. Crit Rev Oncol 5: 451–471, 1994.
Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, andChao MV: High-affinity NGF binding requires coexpression of thetrk proto-oncogene and the low-affinity NGF receptor. Nature 350: 678–683, 1991.
Lee KF, Li E, HuberLJ, Landis SC, et al.: Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69:737–749, 1992.
Lee KF, Bachman K, Landis S, andJaenisch R: Dependence on p75NTR for innervation of some sympathetic targets. Science 263: 1447–1449, 1994.
Verdi JM, Birren SJ, Ibanez CF, et al.: p75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron 12: 733–745, 1994.
Ohmichi M, Decker SJ, Pang L, andSaltiel AR: Phospholipase C-gamma 1 directly associates with the p70trk oncogene product through its src homology domains. J Biol Chem 266: 14858–14861, 1991.
Ohmichi M, Decker SJ, andSaltiel AR: Activation of phosphatidylinositol-3 kinase by nerve growth factor involves indirect coupling of thetrk proto-oncogene with src homology 2 domains. Neuron 9: 769–777, 1992.
Avruch J, Zhang XF, andKyriakis JM: Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem Sci 19:279–283, 1994.
Batistatou A, Volonte C, andGreene LA: Nerve growth factor employs multiple pathways to induce primary response genes in PC12 cells. Mol Biol Cell 3: 363–371, 1992.
Borrello MG, Pelicci G, Arighi E, et al.: The oncogenic versions of the Ret and Trk tyrosine kinases bind Shc and Grb2 adaptor proteins. Oncogene 9: 1661–1668, 1994.
Lange-Carter CA, andJohnson GL: Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science 265: 1458–1461, 1994.
Obermeier A, Lammers R, Wiesmuller KH, et al.: Identification of Trk binding sites for SHC and phosphatidylinositol — kinase and formation of a multimeric signaling complex. J Biol Chem 268: 22963–22966, 1993.
Obermeier A, Halfter H, Wiesmuller KH, et al.: Tyrosine 785 is a major determinant of Trk-substrate interaction. EMBO J 12: 933–941, 1993.
Obermeier A, Bradshaw RA, Seedorf K et al.: Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLC gamma. EMBO J 13: 1585–1590, 1994.
Ohmichi M, Matuoka K Takenawa T, andSaltiel AR: Growth factors differentially stimulate the phosphorylation of Shc proteins and their association with Grb2 in PC-12 pheochromocytoma cells. J Biol Chem 269:1143–1148, 1994.
Rozakis-Adcock M, McGlade J, Mbamalu G, et al.: Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 360: 689–692, 1992.
Satoh T, Nakafuku M, andKaziro Y: Function of Ras as a molecular switch in signal transduction. J Biol Chem 267: 24149–24152, 1992.
Stephens RM, Loeb DM, Copeland TD, et al.: Trk receptors use redundant signal transduction pathways involving SHC and PLC-gamma 1 to mediate NGF responses. Neuron 12: 691–705, 1994.
Taylor LK, Swanson KD, Kerigan J, et al.: Isolation and characterization of a nerve growth factor-regulated Fos kinase from PC12 cells. J Biol Chem 269: 308–318, 1994.
Kaplan DR, andMiller, FD: Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10: 381–391, 2000.
Berg MM, Sternberg DW Hempstead BL, andChao MV: The low-affinity p75 nerve growth factor (NGF) receptor mediates NGF-induced tyrosine phosphorylation.Proc. Natl. Acad. Sci. U. S. A. 88, 7106–7110, 1991.
Hempstead BL, Schleifer LS, andChao MV: Expression of functional nerve growth factor receptors after gene transfer.Science 243, 373–375, 1989.
von Bartheld CS, Kinoshita Y, Prevette D, et al.: Positive and negative effects of neurotrophins on the isthmo-optic nucleus in chick embryos. Neuron 12:639–654, 1994.
Rabizadeh S, Oh J, Zhong, LT, Yang J, et al.: Induction of apoptosis by the low-affinity NGF receptor. Science 261: 345–348, 1993.
Kannan Y, Usami K, Okada M, et al.: Nerve growth factor suppresses apoptosis of murine neutrophils. Biochem Biophys Res Commun 186: 1050–1056, 1992.
Feinstein DL, andLarhammar D: Identification of a conserved protein motif in a group of growth factor receptors. FEBS Lett 272: 7–11, 1990.
Knipper M, Beck A, Rylett J, andBreer H: Neurotrophin induced cAMP and IP3 responses in PC12 cells: different pathways. FEBS Lett 32: 147–152, 1993.
Hantzopoulos PA, Suri C, Glass DJ, et al.: The low-affinity NGF receptor, p75, can collaborate with each of the Trks to potentiate functional responses to the neurotrophins. Neuron 13: 187–201, 1994.
Hempstead BL, Patil N Thiel B, andChao, MV: Deletion of cytoplasmic sequences of the nerve growth factor receptor leads to loss of high-affinity ligand binding. J Biol Chem 265: 9595–9598, 1990.
Beutler B, andvan Huffel C: Unraveling function in the TNF ligand and receptor families. Science 264: 667–668, 1994.
Smith CA, Farrah T, andGoodwin RG: The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76: 959–962, 1994.
Barrett GL, andBartlett PF: The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proc Natl Acad Sci U.S.A. 91: 6501–6505, 1994.
Volonte’ C, Ross AH, andGreene LA: Association of a purineanalogue-sensitive protein kinase activity with p75 nerve growth factor receptors. Mol. Biol Cell 4: 71–78, 1993.
Volonte’ C, andGreene LA: Nerve growth factor-activated protein kinase N. Characterization and rapid near homogeneity purification by nucleotide affinity-exchange chromatography. J Biol Chem 267: 21663–21670, 1992.
Dobrowsky RT, Werner MH, Castellino AM, Chao MV, andHannun YA: Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265: 1596–1599, 1994.
Wolff RA, Dobrowsky RT, Bielawska A, Obeid LM, andHannun YA: Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem 269: 19605–19609, 1994.
Ross AH, Grob P, Bothwell M, et al.: Characterization of nerve growth factor receptor in neural crest tumors using monoclonal antibodies. Proc Natl Acad Sci U.S.A. 81: 6681–6685, 1984.
Morse HG, Gonzalez R, Moore GE, andRobinson WA: Preferential chromosome 1 1q and/or 17q aberrations in short-term cultures of metastatic melanoma in resections from human brain. Cancer Genet Cytogenet 64: 118–126, 1992.
Ishikawa M, Dennis JW, Man S, andKerbel RS: Isolation and characterization of spontaneous wheat germ agglutinin-resistant human melanoma mutants displaying remarkably different metastatic profiles in nude mice. Cancer Res 48: 665–670, 1988.
Marchetti D, Menter D, Jin L, et al.: Nerve growth factor effects on human and mouse melanoma cell invasion and heparanase production. Int J Cancer 55: 692–699, 1993.
Gladson CL, Wilcox JN, Sanders L: Cerebral microenvironment influence et al.: expression of the vitronectin gene in astrocytic tumors. J Cell Sci 108: 947–956, 1995.
Liotta LA, Steeg PS, andStetler-Stevenson WG: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation.Cell 64, 327–336, 1991.
Liotta LA, Thorgeirsson UP, andGarbisa S: Role of collagenases in tumor cell invasion. Cancer Metastasis Rev 1: 277–288, 1982.
Powell WC, andMatrisian LM: Complex roles of matrix metalloproteinases in tumor progression. Curr Top Microbiol Immunol 213: 1–21, 1996.
Timar J, Lapis K, Dudas J, et al.: Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Semin Cancer Biol 12: 173–186, 2002.
Bernfield M, Gotte M, Park PW, et al.: Functions of cell surface heparan sulfate proteoglycans. Ann Rev Biochem 68: 729–777, 1999.
Iozzo RV: Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J Clin Invest 108. 165–167, 2001.
McKeehan WL, andKan M: Heparan sulfate fibroblast growth factor receptor complex: structure-function relationships. Mol Reprod Dev 39: 69–81, 1994.
Yanagishita M, andHascall VC: Cell surface heparan sulfate proteoglycans. J Biol Chem 267: 9451–9454, 1992.
Vlodavsky I, andFriedmann Y: Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 108: 341–347, 2001.
Marchetti D, Liu S, Spohn WC, andCarson DD: Heparanase and a synthetic peptide of heparan sulfate-interacting protein recognize common sites on cell surface and extracellular matrix heparan sulfate. J Biol Chem 272: 15891–15897, 1997.
Nakajima M, Irimura T, andNicolson GL: Heparanases and tumor metastasis. J Cell Biochem 36: 157–167, 1988.
Nakajima M, Irimura T, andNicolson GL: A solid-phase substrate of heparanase: its application to assay of human melanoma for heparan sulfate degradative activity. Anal Biochem 157: 162–171, 1986.
Nakajima M, Irimura I andNicolson GL: Tumor metastasisassociated heparanase (heparan sulfate endoglycosidase) activity in human melanoma cells. Cancer Lett 31: 277–283, 1986.
Vlodavsky I, Friedmann Y, Elkin M, et al.: Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nature Med 5: 793–802, 1999.
Hulett MD, Freeman C, Hamdorf BJ, et al.: Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nature Med 5: 803–809, 1999.
KussiePH, Hulmes JD, Ludwig DL, et al.: Cloning and functional expression of a human heparanase gene. Biochem Biophys Res Comm 261: 183–187, 1999.
Toyoshima M, andNakajima M: Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem 274: 24153–24160, 1999.
Aviezer D, Iozzo RV, Noonan DM, andYayon A: Suppression of autocrine and paracrine functions of basic fibroblast growth factor by stable expression of perlecan antisense cDNA. Mol Cell Biol 17: 1938–1946, 1997.
Rodeck U, Becker D, andHerlyn M: Basic fibroblast growth factor in human melanoma. Cancer Cells 3: 308–311, 1991.
Gospodarowicz D, andCheng J: Heparin protects basic and acidic FGF from inactivation. J Cell Physiol 128: 475–484, 1986.
Marchetti D, Reiland J, Erwin B, andRoy M: Inhibition of heparanase activity and heparanase-induced angiogenesis by suramin analogues. Int J Cancer 104: 167–174, 2003.
Menter DG, Herrmann JL, Marchetti D, andNicolson GL: Involvement of neurotrophins and growth factors in brain metastasis formation. Invasion Metastasis 14: 372–384, 1994.
Marchetti D, McCutcheon I, Ross JM, andNicolson GL: Inverse expression of neurotrophin receptor and at the invasion front of brain-metastatic human melanoma tissues. Int J Oncol 7: 87–94, 1995.
Yoshida K, andGage FH: Cooperative regulation of nerve growth factor synthesis and secretion in fibroblasts and astrocytes by fibroblast growth factor and other cytokines. Brain Res 569: 14–25, 1992.
McCarthy KD, andde Vellis J: Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85: 890–902, 1980.
Marchetti D, Li J, andShen R: Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res 60: 4767–4770, 2000.
Marchetti D, andNicolson GL: Human heparanase: a molecular determinant of brain metastasis. Adv Enzyme Reg 41: 343–359, 2001.
Kettenmann H, Orkand RK, andSchachner M: Coupling among identified cells in mammalian nervous system cultures. J Neurosci 3: 506–516, 1983.
Wilkin GP, Marriott DR, andCholewinski AJ: Astrocyte heterogeneity. Trends Neurosci 13: 43–46, 1990.
Hirano A, Kawanami T, andLlena JF: Electron microscopy of the blood-brain barrier in disease. Microsc Res Tech 27: 543–556, 1994.
Kimelberg HK, andRansom BR: Physiological aspects of astrocyte swelling. In: Fedoroff, S., Verandakis, A. (Eds.),Astrocytes. Orlando: Academic Press, pp. 129–166, 1986
Lantos PL, Luthert PJ, andDeane BR: Vascular permeability and cerebral edema in experimental brain tumors. In: Inaba, Y., Klatzo, I., Spatz, I. (Eds.),Brain Edema, New York: Springer-Verlag, pp. 40–47, 1984
Klatzo I, Chui E, Fujiwara K, andSpatz M: Resolution of vasogenic brain edema. Adv Neurol 28: 359–373, 1980.