Brain intrinsic connection patterns underlying tool processing in human adults are present in neonates and not in macaques

NeuroImage - Tập 258 - Trang 119339 - 2022
Haojie Wen1,2,3, Ting Xu4, Xiaoying Wang1,2,3, Xi Yu1, Yanchao Bi1,2,3,5
1State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
2IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
3Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
4Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
5Chinese Institute for Brain Research, Beijing 102206, China

Tài liệu tham khảo

Ambrose, 2001, Paleolithic technology and human evolution, Science, 291, 1748, 10.1126/science.1059487 Arcaro, 2017, Seeing faces is necessary for face-domain formation, Nat. Neurosci., 20, 1404, 10.1038/nn.4635 Avants, 2009, Advanced normalization tools (ANTS), Insight J., 2, 1 Baumann, 2011, Orthogonal representation of sound dimensions in the primate midbrain, Nat. Neurosci., 14, 423, 10.1038/nn.2771 Baumann, 2015, The topography of frequency and time representation in primate auditory cortices, eLife, 4, e03256, 10.7554/eLife.03256 Bentley-Condit, 2010, Animal tool use: current definitions and an updated comprehensive catalog, Behaviour, 147, 185, 10.1163/000579509X12512865686555 Bi, 2015, The white matter structural network underlying human tool use and tool understanding, J. Neurosci., 35, 6822, 10.1523/JNEUROSCI.3709-14.2015 Bi, 2016, Object Domain and Modality in the Ventral Visual Pathway, Trends Cogn. Sci., 20, 282, 10.1016/j.tics.2016.02.002 Borra, 2017, The macaque lateral grasping network: a neural substrate for generating purposeful hand actions, Neurosci. Biobehav. Rev., 75, 65, 10.1016/j.neubiorev.2017.01.017 Brandi, 2014, The neural correlates of planning and executing actual tool use, J. Neurosci., 34, 13183, 10.1523/JNEUROSCI.0597-14.2014 Buxbaum, 2014, Critical brain regions for tool-related and imitative actions: a componential analysis, Brain, 137, 1971, 10.1093/brain/awu111 Carota, 2017, Representational similarity mapping of distributional semantics in left inferior frontal, middle temporal, and motor cortex, Cereb. Cortex, 10.1093/cercor/bhw379 Chao, 2000, Representation of manipulable man-made objects in the dorsal stream, Neuroimage, 12, 478, 10.1006/nimg.2000.0635 Cheng, 2021, Connectional asymmetry of the inferior parietal lobule shapes hemispheric specialization in humans, chimpanzees, and rhesus macaques, eLife, 10, e67600, 10.7554/eLife.67600 Chouinard, 2012, FMRI-adaptation to highly-rendered color photographs of animals and manipulable artifacts during a classification task, Neuroimage, 59, 2941, 10.1016/j.neuroimage.2011.09.073 Deen, 2017, Organization of high-level visual cortex in human infants, Nat. Commun., 8, 13995, 10.1038/ncomms13995 Donahue, 2016, Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the Monkey, J. Neurosci., 36, 6758, 10.1523/JNEUROSCI.0493-16.2016 Doria, 2010, Emergence of resting state networks in the preterm human brain, Proc. Natl. Acad. Sci., 107, 20015, 10.1073/pnas.1007921107 Fayet, 2020, Evidence of tool use in a seabird, Proc. Natl. Acad. Sci., 117, 1277, 10.1073/pnas.1918060117 Fiske, 2019, Neural substrates of early executive function development, Dev. Rev., 52, 42, 10.1016/j.dr.2019.100866 Fitzgibbon, 2020, The developing human connectome project (dHCP) automated resting-state functional processing framework for newborn infants, Neuroimage, 223, 10.1016/j.neuroimage.2020.117303 Fransson, 2007, Resting-state networks in the infant brain, Proc. Natl. Acad. Sci., 104, 15531, 10.1073/pnas.0704380104 Friston, 1996, Movement-related effects in fMRI time-series: movement artifacts in fMRI, Magn. Reson. Med., 35, 346, 10.1002/mrm.1910350312 Gao, 2015, Functional network development during the first year: relative sequence and socioeconomic correlations, Cereb. Cortex, 25, 2919, 10.1093/cercor/bhu088 Garcea, 2020, Structural disconnection of the tool use network after left hemisphere stroke predicts limb apraxia severity, Cereb. Cortex Commun., 1, 1 Gibson, 1994 Gilmore, 2018, Imaging structural and functional brain development in early childhood, Nat. Rev. Neurosci., 19, 123, 10.1038/nrn.2018.1 Glasser, 2013, The minimal preprocessing pipelines for the human connectome project, Neuroimage, 80, 105, 10.1016/j.neuroimage.2013.04.127 Hesse, 2020, The macaque face patch system: a turtle's underbelly for the brain, Nat. Rev. Neurosci., 21, 695, 10.1038/s41583-020-00393-w Howells, 2020, Reproducing macaque lateral grasping and oculomotor networks using resting state functional connectivity and diffusion tractography, Brain Struct. Funct., 225, 2533, 10.1007/s00429-020-02142-2 Hughes, 2017, A dedicated neonatal brain imaging system: a dedicated neonatal brain imaging system, Magn. Reson. Med., 78, 794, 10.1002/mrm.26462 Johnson-Frey, 2003, What's so special about human tool use?, Neuron, 39, 201, 10.1016/S0896-6273(03)00424-0 Kamps, 2020, Connectivity at the origins of domain specificity in the cortical face and place networks, Proc. Natl. Acad. Sci., 117, 6163, 10.1073/pnas.1911359117 Kastner, 2017, A brief comparative review of primate posterior parietal cortex: a novel hypothesis on the human toolmaker, Neuropsychologia, 105, 123, 10.1016/j.neuropsychologia.2017.01.034 Konkle, 2017, The large-scale organization of object-responsive cortex is reflected in resting-state network architecture, Cereb. Cortex, 29, 4933 Ku, 2011, fMRI of the face-processing network in the ventral temporal lobe of awake and anesthetized macaques, Neuron, 70, 352, 10.1016/j.neuron.2011.02.048 Laland, 2021, Understanding human cognitive uniqueness, Annu. Rev. Psychol., 72, 689, 10.1146/annurev-psych-062220-051256 Landi, 2017, Two areas for familiar face recognition in the primate brain, Science, 357, 591, 10.1126/science.aan1139 Lewis, 2006, Cortical networks related to human use of tools, Neuroscientist, 12, 211, 10.1177/1073858406288327 Liu, 2021, Functional parcellation of human and macaque striatum reveals human-specific connectivity in the dorsal caudate, Neuroimage, 235, 10.1016/j.neuroimage.2021.118006 Mahon, 2020, The representation of tools in the human brain, 765 Makropoulos, 2018, The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction, Neuroimage, 173, 88, 10.1016/j.neuroimage.2018.01.054 Mars, 2018, Connectivity fingerprints: from areal descriptions to abstract spaces, Trends Cogn. Sci., 22, 1026, 10.1016/j.tics.2018.08.009 McLaren, 2010, Rhesus macaque brain morphometry: a methodological comparison of voxel-wise approaches, Methods, 50, 157, 10.1016/j.ymeth.2009.10.003 McLaren, 2009, A population-average MRI-based atlas collection of the rhesus macaque, Neuroimage, 45, 52, 10.1016/j.neuroimage.2008.10.058 Milham, 2018, An open resource for non-human primate imaging, Neuron, 100, 61, 10.1016/j.neuron.2018.08.039 Noonan, 2014, A neural circuit covarying with social hierarchy in macaques, PLoS Biol., 12, 10.1371/journal.pbio.1001940 Oakley, 1956 Obayashi, 2001, Functional brain mapping of Monkey tool use, Neuroimage, 14, 853, 10.1006/nimg.2001.0878 Osiurak, 2020, The elephant in the room: what matters cognitively in cumulative technological culture, Behav. Brain Sci., 43, 1 Passingham, 2002, The anatomical basis of functional localization in the cortex, Nat. Rev. Neurosci., 3, 606, 10.1038/nrn893 Peelen, 2013, Tool selectivity in left occipitotemporal cortex develops without vision, J. Cogn. Neurosci., 25, 1225, 10.1162/jocn_a_00411 Peeters, 2009, The representation of tool use in humans and Monkeys: common and uniquely human features, J. Neurosci., 29, 11523, 10.1523/JNEUROSCI.2040-09.2009 Penn, 2008, Darwin's mistake: explaining the discontinuity between human and nonhuman minds, Behav. Brain Sci., 31, 109, 10.1017/S0140525X08003543 Poirier, 2017, Auditory motion-specific mechanisms in the primate brain, PLOS Biol., 15, 10.1371/journal.pbio.2001379 Power, 2012, Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion, Neuroimage, 59, 2142, 10.1016/j.neuroimage.2011.10.018 Premereur, 2015, Effective connectivity of depth-structure–selective patches in the lateral bank of the macaque intraparietal sulcus, PLOS Biol., 13, 10.1371/journal.pbio.1002072 Randerath, 2010, Different left brain regions are essential for grasping a tool compared with its subsequent use, Neuroimage, 53, 171, 10.1016/j.neuroimage.2010.06.038 Rinne, 2017, Functional imaging of audio–visual selective attention in Monkeys and humans: how do lapses in Monkey performance affect cross-species correspondences?, Cereb. Cortex, 27, 3471, 10.1093/cercor/bhx092 Salimi-Khorshidi, 2014, Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers, Neuroimage, 90, 449, 10.1016/j.neuroimage.2013.11.046 Schönwiesner, 2015, Parcellation of human and Monkey core auditory cortex with fMRI pattern classification and objective detection of tonotopic gradient reversals, Cereb. Cortex, 25, 3278, 10.1093/cercor/bhu124 Schwiedrzik, 2015, Face patch resting state networks link face processing to social cognition, PLOS Biol., 13, 10.1371/journal.pbio.1002245 Shumaker, 2011 Slater, 2016, Individually customisable non-invasive head immobilisation system for non-human primates with an option for voluntary engagement, J. Neurosci. Methods, 269, 46, 10.1016/j.jneumeth.2016.05.009 Smith, 2013, Resting-state fMRI in the human connectome project, Neuroimage, 80, 144, 10.1016/j.neuroimage.2013.05.039 Stevens, 2015, Functional connectivity constrains the category-related organization of human ventral occipitotemporal cortex: Connectivity constrains VOTC organization, Hum. Brain Mapp., 36, 2187, 10.1002/hbm.22764 Tarhan, 2015, Shared and distinct neuroanatomic regions critical for tool-related action production and recognition: evidence from 131 left-hemisphere stroke patients, J. Cogn. Neurosci., 27, 2491, 10.1162/jocn_a_00876 Touwen, 1995, The neurological development of prehension: a developmental neurologist's view, Int. J. Psychophysiol., 19, 115, 10.1016/0167-8760(94)00080-X Tsao, 2008, Comparing face patch systems in macaques and humans, Proc. Natl. Acad. Sci., 105, 19514, 10.1073/pnas.0809662105 Vaesen, 2012, The cognitive bases of human tool use, Behav. Brain Sci., 35, 203, 10.1017/S0140525X11001452 Van Essen, 2019, Cerebral cortical folding, parcellation, and connectivity in humans, nonhuman primates, and mice, Proc. Natl. Acad. Sci., 116, 26173, 10.1073/pnas.1902299116 Van Essen, 2013, The WU-Minn human connectome project: an overview, Neuroimage, 80, 62, 10.1016/j.neuroimage.2013.05.041 Visalberghi, 1994, Lack of comprehension of cause-effect relations in tool-using capuchin Monkeys (Cebus apella), J. Comp. Psychol., 108, 15, 10.1037/0735-7036.108.1.15 Wang, 2016, The hierarchical structure of the face network revealed by its functional connectivity pattern, J. Neurosci., 36, 890, 10.1523/JNEUROSCI.2789-15.2016 Wang, 2018, Disentangling representations of shape and action components in the tool network, Neuropsychologia, 117, 199, 10.1016/j.neuropsychologia.2018.05.026 Wang, 2020, Multimodal mapping of the face connectome, Nat. Hum. Behav., 4, 397, 10.1038/s41562-019-0811-3 Watson, 2015, A distributed network critical for selecting among tool-directed actions, Cortex, 65, 65, 10.1016/j.cortex.2015.01.007 Wilson, 2015, Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans, Nat. Commun., 6, 8901, 10.1038/ncomms9901 Wu, 2018, Accurate nonlinear mapping between MNI volumetric and FreeSurfer surface coordinate systems, Hum. Brain Mapp., 39, 3793, 10.1002/hbm.24213 Wu, 2020, Object parsing in the left lateral occipitotemporal cortex: whole shape, part shape, and graspability, Neuropsychologia, 138, 10.1016/j.neuropsychologia.2020.107340 Xia, 2013, BrainNet viewer: a network visualization tool for human brain connectomics, PLoS One, 8, e68910, 10.1371/journal.pone.0068910 Xu, 2020, Cross-species functional alignment reveals evolutionary hierarchy within the connectome, Neuroimage, 223, 10.1016/j.neuroimage.2020.117346 Yan, 2016, DPABI: data processing & analysis for (resting-state) brain imaging, Neuroinformatics, 14, 339, 10.1007/s12021-016-9299-4 Yarkoni, 2011, Large-scale automated synthesis of human functional neuroimaging data, Nat. Methods, 8, 665, 10.1038/nmeth.1635