Brain intrinsic connection patterns underlying tool processing in human adults are present in neonates and not in macaques
Tài liệu tham khảo
Ambrose, 2001, Paleolithic technology and human evolution, Science, 291, 1748, 10.1126/science.1059487
Arcaro, 2017, Seeing faces is necessary for face-domain formation, Nat. Neurosci., 20, 1404, 10.1038/nn.4635
Avants, 2009, Advanced normalization tools (ANTS), Insight J., 2, 1
Baumann, 2011, Orthogonal representation of sound dimensions in the primate midbrain, Nat. Neurosci., 14, 423, 10.1038/nn.2771
Baumann, 2015, The topography of frequency and time representation in primate auditory cortices, eLife, 4, e03256, 10.7554/eLife.03256
Bentley-Condit, 2010, Animal tool use: current definitions and an updated comprehensive catalog, Behaviour, 147, 185, 10.1163/000579509X12512865686555
Bi, 2015, The white matter structural network underlying human tool use and tool understanding, J. Neurosci., 35, 6822, 10.1523/JNEUROSCI.3709-14.2015
Bi, 2016, Object Domain and Modality in the Ventral Visual Pathway, Trends Cogn. Sci., 20, 282, 10.1016/j.tics.2016.02.002
Borra, 2017, The macaque lateral grasping network: a neural substrate for generating purposeful hand actions, Neurosci. Biobehav. Rev., 75, 65, 10.1016/j.neubiorev.2017.01.017
Brandi, 2014, The neural correlates of planning and executing actual tool use, J. Neurosci., 34, 13183, 10.1523/JNEUROSCI.0597-14.2014
Buxbaum, 2014, Critical brain regions for tool-related and imitative actions: a componential analysis, Brain, 137, 1971, 10.1093/brain/awu111
Carota, 2017, Representational similarity mapping of distributional semantics in left inferior frontal, middle temporal, and motor cortex, Cereb. Cortex, 10.1093/cercor/bhw379
Chao, 2000, Representation of manipulable man-made objects in the dorsal stream, Neuroimage, 12, 478, 10.1006/nimg.2000.0635
Cheng, 2021, Connectional asymmetry of the inferior parietal lobule shapes hemispheric specialization in humans, chimpanzees, and rhesus macaques, eLife, 10, e67600, 10.7554/eLife.67600
Chouinard, 2012, FMRI-adaptation to highly-rendered color photographs of animals and manipulable artifacts during a classification task, Neuroimage, 59, 2941, 10.1016/j.neuroimage.2011.09.073
Deen, 2017, Organization of high-level visual cortex in human infants, Nat. Commun., 8, 13995, 10.1038/ncomms13995
Donahue, 2016, Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the Monkey, J. Neurosci., 36, 6758, 10.1523/JNEUROSCI.0493-16.2016
Doria, 2010, Emergence of resting state networks in the preterm human brain, Proc. Natl. Acad. Sci., 107, 20015, 10.1073/pnas.1007921107
Fayet, 2020, Evidence of tool use in a seabird, Proc. Natl. Acad. Sci., 117, 1277, 10.1073/pnas.1918060117
Fiske, 2019, Neural substrates of early executive function development, Dev. Rev., 52, 42, 10.1016/j.dr.2019.100866
Fitzgibbon, 2020, The developing human connectome project (dHCP) automated resting-state functional processing framework for newborn infants, Neuroimage, 223, 10.1016/j.neuroimage.2020.117303
Fransson, 2007, Resting-state networks in the infant brain, Proc. Natl. Acad. Sci., 104, 15531, 10.1073/pnas.0704380104
Friston, 1996, Movement-related effects in fMRI time-series: movement artifacts in fMRI, Magn. Reson. Med., 35, 346, 10.1002/mrm.1910350312
Gao, 2015, Functional network development during the first year: relative sequence and socioeconomic correlations, Cereb. Cortex, 25, 2919, 10.1093/cercor/bhu088
Garcea, 2020, Structural disconnection of the tool use network after left hemisphere stroke predicts limb apraxia severity, Cereb. Cortex Commun., 1, 1
Gibson, 1994
Gilmore, 2018, Imaging structural and functional brain development in early childhood, Nat. Rev. Neurosci., 19, 123, 10.1038/nrn.2018.1
Glasser, 2013, The minimal preprocessing pipelines for the human connectome project, Neuroimage, 80, 105, 10.1016/j.neuroimage.2013.04.127
Hesse, 2020, The macaque face patch system: a turtle's underbelly for the brain, Nat. Rev. Neurosci., 21, 695, 10.1038/s41583-020-00393-w
Howells, 2020, Reproducing macaque lateral grasping and oculomotor networks using resting state functional connectivity and diffusion tractography, Brain Struct. Funct., 225, 2533, 10.1007/s00429-020-02142-2
Hughes, 2017, A dedicated neonatal brain imaging system: a dedicated neonatal brain imaging system, Magn. Reson. Med., 78, 794, 10.1002/mrm.26462
Johnson-Frey, 2003, What's so special about human tool use?, Neuron, 39, 201, 10.1016/S0896-6273(03)00424-0
Kamps, 2020, Connectivity at the origins of domain specificity in the cortical face and place networks, Proc. Natl. Acad. Sci., 117, 6163, 10.1073/pnas.1911359117
Kastner, 2017, A brief comparative review of primate posterior parietal cortex: a novel hypothesis on the human toolmaker, Neuropsychologia, 105, 123, 10.1016/j.neuropsychologia.2017.01.034
Konkle, 2017, The large-scale organization of object-responsive cortex is reflected in resting-state network architecture, Cereb. Cortex, 29, 4933
Ku, 2011, fMRI of the face-processing network in the ventral temporal lobe of awake and anesthetized macaques, Neuron, 70, 352, 10.1016/j.neuron.2011.02.048
Laland, 2021, Understanding human cognitive uniqueness, Annu. Rev. Psychol., 72, 689, 10.1146/annurev-psych-062220-051256
Landi, 2017, Two areas for familiar face recognition in the primate brain, Science, 357, 591, 10.1126/science.aan1139
Lewis, 2006, Cortical networks related to human use of tools, Neuroscientist, 12, 211, 10.1177/1073858406288327
Liu, 2021, Functional parcellation of human and macaque striatum reveals human-specific connectivity in the dorsal caudate, Neuroimage, 235, 10.1016/j.neuroimage.2021.118006
Mahon, 2020, The representation of tools in the human brain, 765
Makropoulos, 2018, The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction, Neuroimage, 173, 88, 10.1016/j.neuroimage.2018.01.054
Mars, 2018, Connectivity fingerprints: from areal descriptions to abstract spaces, Trends Cogn. Sci., 22, 1026, 10.1016/j.tics.2018.08.009
McLaren, 2010, Rhesus macaque brain morphometry: a methodological comparison of voxel-wise approaches, Methods, 50, 157, 10.1016/j.ymeth.2009.10.003
McLaren, 2009, A population-average MRI-based atlas collection of the rhesus macaque, Neuroimage, 45, 52, 10.1016/j.neuroimage.2008.10.058
Milham, 2018, An open resource for non-human primate imaging, Neuron, 100, 61, 10.1016/j.neuron.2018.08.039
Noonan, 2014, A neural circuit covarying with social hierarchy in macaques, PLoS Biol., 12, 10.1371/journal.pbio.1001940
Oakley, 1956
Obayashi, 2001, Functional brain mapping of Monkey tool use, Neuroimage, 14, 853, 10.1006/nimg.2001.0878
Osiurak, 2020, The elephant in the room: what matters cognitively in cumulative technological culture, Behav. Brain Sci., 43, 1
Passingham, 2002, The anatomical basis of functional localization in the cortex, Nat. Rev. Neurosci., 3, 606, 10.1038/nrn893
Peelen, 2013, Tool selectivity in left occipitotemporal cortex develops without vision, J. Cogn. Neurosci., 25, 1225, 10.1162/jocn_a_00411
Peeters, 2009, The representation of tool use in humans and Monkeys: common and uniquely human features, J. Neurosci., 29, 11523, 10.1523/JNEUROSCI.2040-09.2009
Penn, 2008, Darwin's mistake: explaining the discontinuity between human and nonhuman minds, Behav. Brain Sci., 31, 109, 10.1017/S0140525X08003543
Poirier, 2017, Auditory motion-specific mechanisms in the primate brain, PLOS Biol., 15, 10.1371/journal.pbio.2001379
Power, 2012, Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion, Neuroimage, 59, 2142, 10.1016/j.neuroimage.2011.10.018
Premereur, 2015, Effective connectivity of depth-structure–selective patches in the lateral bank of the macaque intraparietal sulcus, PLOS Biol., 13, 10.1371/journal.pbio.1002072
Randerath, 2010, Different left brain regions are essential for grasping a tool compared with its subsequent use, Neuroimage, 53, 171, 10.1016/j.neuroimage.2010.06.038
Rinne, 2017, Functional imaging of audio–visual selective attention in Monkeys and humans: how do lapses in Monkey performance affect cross-species correspondences?, Cereb. Cortex, 27, 3471, 10.1093/cercor/bhx092
Salimi-Khorshidi, 2014, Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers, Neuroimage, 90, 449, 10.1016/j.neuroimage.2013.11.046
Schönwiesner, 2015, Parcellation of human and Monkey core auditory cortex with fMRI pattern classification and objective detection of tonotopic gradient reversals, Cereb. Cortex, 25, 3278, 10.1093/cercor/bhu124
Schwiedrzik, 2015, Face patch resting state networks link face processing to social cognition, PLOS Biol., 13, 10.1371/journal.pbio.1002245
Shumaker, 2011
Slater, 2016, Individually customisable non-invasive head immobilisation system for non-human primates with an option for voluntary engagement, J. Neurosci. Methods, 269, 46, 10.1016/j.jneumeth.2016.05.009
Smith, 2013, Resting-state fMRI in the human connectome project, Neuroimage, 80, 144, 10.1016/j.neuroimage.2013.05.039
Stevens, 2015, Functional connectivity constrains the category-related organization of human ventral occipitotemporal cortex: Connectivity constrains VOTC organization, Hum. Brain Mapp., 36, 2187, 10.1002/hbm.22764
Tarhan, 2015, Shared and distinct neuroanatomic regions critical for tool-related action production and recognition: evidence from 131 left-hemisphere stroke patients, J. Cogn. Neurosci., 27, 2491, 10.1162/jocn_a_00876
Touwen, 1995, The neurological development of prehension: a developmental neurologist's view, Int. J. Psychophysiol., 19, 115, 10.1016/0167-8760(94)00080-X
Tsao, 2008, Comparing face patch systems in macaques and humans, Proc. Natl. Acad. Sci., 105, 19514, 10.1073/pnas.0809662105
Vaesen, 2012, The cognitive bases of human tool use, Behav. Brain Sci., 35, 203, 10.1017/S0140525X11001452
Van Essen, 2019, Cerebral cortical folding, parcellation, and connectivity in humans, nonhuman primates, and mice, Proc. Natl. Acad. Sci., 116, 26173, 10.1073/pnas.1902299116
Van Essen, 2013, The WU-Minn human connectome project: an overview, Neuroimage, 80, 62, 10.1016/j.neuroimage.2013.05.041
Visalberghi, 1994, Lack of comprehension of cause-effect relations in tool-using capuchin Monkeys (Cebus apella), J. Comp. Psychol., 108, 15, 10.1037/0735-7036.108.1.15
Wang, 2016, The hierarchical structure of the face network revealed by its functional connectivity pattern, J. Neurosci., 36, 890, 10.1523/JNEUROSCI.2789-15.2016
Wang, 2018, Disentangling representations of shape and action components in the tool network, Neuropsychologia, 117, 199, 10.1016/j.neuropsychologia.2018.05.026
Wang, 2020, Multimodal mapping of the face connectome, Nat. Hum. Behav., 4, 397, 10.1038/s41562-019-0811-3
Watson, 2015, A distributed network critical for selecting among tool-directed actions, Cortex, 65, 65, 10.1016/j.cortex.2015.01.007
Wilson, 2015, Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans, Nat. Commun., 6, 8901, 10.1038/ncomms9901
Wu, 2018, Accurate nonlinear mapping between MNI volumetric and FreeSurfer surface coordinate systems, Hum. Brain Mapp., 39, 3793, 10.1002/hbm.24213
Wu, 2020, Object parsing in the left lateral occipitotemporal cortex: whole shape, part shape, and graspability, Neuropsychologia, 138, 10.1016/j.neuropsychologia.2020.107340
Xia, 2013, BrainNet viewer: a network visualization tool for human brain connectomics, PLoS One, 8, e68910, 10.1371/journal.pone.0068910
Xu, 2020, Cross-species functional alignment reveals evolutionary hierarchy within the connectome, Neuroimage, 223, 10.1016/j.neuroimage.2020.117346
Yan, 2016, DPABI: data processing & analysis for (resting-state) brain imaging, Neuroinformatics, 14, 339, 10.1007/s12021-016-9299-4
Yarkoni, 2011, Large-scale automated synthesis of human functional neuroimaging data, Nat. Methods, 8, 665, 10.1038/nmeth.1635