Brain distribution and evidence for both central and neurohormonal actions of cocaine‐ and amphetamine‐regulated transcript peptide in Xenopus laevis

Journal of Comparative Neurology - Tập 507 Số 4 - Trang 1622-1638 - 2008
Eric W. Roubos1, G Lázár2, Marinella Calle1,3, Henk Barendregt3, Balázs Gaszner1,2, Tamás Kozicz1
1Department of Cellular Animal Physiology, Faculty of Science, Radboud University Nijmegen, 6525 ED Nijmegen, The Netherlands
2Department of Human Anatomy, University of Pécs, Medical School, 7624 Pécs, Hungary
3Department of Computational Sciences, Faculty of Science, Radboud University Nijmegen, 6525 ED Nijmegen, The Netherlands

Tóm tắt

AbstractWe tested the hypothesis that, in the amphibian Xenopus laevis, cocaine‐ and amphetamine‐regulated transcript peptide (CARTp) not only has widespread actions in the brain but also acts as a local factor in endocrine pituitary cells and/or is neurohemally secreted into the circulation to control peripheral targets. CARTp‐immunoreactive cells occur in the olfactory bulb, nucleus accumbens, amygdala, septum, striatum, nucleus of Bellonci, ventrolateral nucleus, central thalamic nucleus, preoptic nuclei, and suprachiasmatic nucleus, and particularly in the medial pallium, ventromedial nucleus, hypothalamus, Edinger‐Westphal nucleus, optic tectum, raphe nuclei, central gray, nucleus of the solitary tract, and spinal cord. From the hypothalamic magnocellular nucleus, CARTp‐containing axons run to the neurohemal median eminence, and to the neural pituitary lobe to form neurohemal terminals, as shown by immunoelectron microscopy. Starvation increases the number of CARTp‐cells in the optic tectum by 46% but has no effect on such cells in the torus semicircularis. CARTp does not affect in vitro release of α‐melanophore‐stimulating hormone from pituitary melanotrope cells. Our results support the hypothesis that in X. laevis, CARTp not only has multiple and not exclusively feeding‐related actions in the brain but is also secreted as a neurohormone 1) into the portal system to control endocrine targets in the pituitary distal lobe and 2) from neurohemal axon terminals in the neural pituitary lobe to act peripherally. The differences in CARTp distribution between X. laevis and Rana esculenta may be related to different environmental and physiological conditions such as feeding, sensory information processing, and locomotion. J. Comp. Neurol. 507:1622–1638, 2008. © 2008 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1016/S0006-8993(99)01907-1

Alibardi L, 1999, Characterization of tuberculum‐ventral neurons in the dorsal cochlear nucleus of the guinea pig, J Submicrosc Citole Pathol, 31, 295

Alibardi L, 2000, Cytology of large neurons in the guinea pig dorsal cochlear nucleus contacting the inferior colliculus, Eur J Histochem, 44, 365

10.1055/s-2001-17205

Baranowska B, 2004, Effects of cocaine‐amphetamine regulated transcript (CART) on hormone release, Regul Pept, 15, 55, 10.1016/j.regpep.2004.05.006

Bliss CJ, 1967, Statistics in biology

10.1073/pnas.96.23.13506

10.1196/annals.1327.035

10.1016/j.brainres.2004.12.056

10.1016/j.ygcen.2006.01.007

10.1111/j.1365-2826.2006.01433.x

10.1111/j.1365-2826.2006.01475.x

10.1016/S0014-2999(03)01368-2

Dall‐Vechia S, 2000, CART peptide immunoreactivity in the hypothalamus and pituitary in monkeys: analysis of ultrastructural features and synaptic connections in the paraventricular nucleus, J Comp Neurol, 416, 291, 10.1002/(SICI)1096-9861(20000117)416:3<291::AID-CNE2>3.0.CO;2-E

10.1523/JNEUROSCI.15-03-02471.1995

10.1002/cne.1085

10.1016/S0896-6273(00)81084-3

10.1016/S0016-6480(03)00120-5

Jenks BG, 2007, Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis, Neuroendocrinology, 994, 1

Kimmel HL, 2000, Intra‐ventral tegmental area injection of rat cocaine‐ and amphetamine‐regulated transcript peptide 55–102 induces locomotor activity and promotes conditioned place preference, J Pharmacol Exp Ther, 294, 784

10.1046/j.1365-2826.1997.00651.x

10.1002/(SICI)1096-9861(19980202)391:1<115::AID-CNE10>3.0.CO;2-X

10.1016/j.ygcen.2007.04.005

10.1210/en.143.4.1337

10.1038/29993

10.1016/S0166-2236(98)01377-0

10.1002/(SICI)1098-2396(19990901)33:3<163::AID-SYN1>3.0.CO;2-T

10.1054/npep.2002.0887

10.1210/en.2003-0845

10.1002/(SICI)1098-2396(199808)29:4<293::AID-SYN1>3.0.CO;2-0

10.1046/j.1365-2826.2003.00960.x

10.1002/cne.903100106

10.1002/cne.20264

Martens GJM, 1981, Microsuperfusion of neurointermediate lobes of Xenopus laevis: concomitant and coordinately controlled release of newly synthesized peptides, Comp Biochem Physiol, 69, 75

10.1007/978-1-4612-0533-3_5

10.1002/(SICI)1096-9861(20000327)419:1<96::AID-CNE6>3.0.CO;2-V

10.1002/cne.901360207

10.1016/S0300-9629(97)00035-2

10.1196/annals.1327.022

10.1016/0196-9781(95)00049-P

10.1093/biomet/52.3-4.591

10.1016/S0006-8993(00)03312-6

ten Donkelaar HJ, 1998

10.1016/S0014-5793(98)00543-2

10.1016/0891-0618(94)90018-3

10.1159/000127204

10.1016/0196-9781(87)90142-2

10.1210/en.2003-1648

10.1016/j.peptides.2004.10.023

10.1016/S0006-8993(00)03001-8

10.1210/endo.142.12.8519

10.1016/j.brainres.2003.11.011

Vrang N, 1999, Neurochemical characterization of hypothalamic cocaine‐ amphetamine‐regulated transcript neurons, J Neurosci, 19, 1, 10.1523/JNEUROSCI.19-10-j0006.1999

10.1111/j.1365-2826.2004.01110.x

10.1196/annals.1327.106

10.1016/j.brainresprot.2005.07.001