Brain Encoding and Decoding in fMRI with Bidirectional Deep Generative Models
Tài liệu tham khảo
Kay, 2008, Identifying natural images from human brain activity, Nature, 452, 352, 10.1038/nature06713
Horikawa, 2017, Generic decoding of seen and imagined objects using hierarchical visual features, Nat Commun, 8, 15037, 10.1038/ncomms15037
Naselaris, 2011, Encoding and decoding in fMRI, NeuroImage, 56, 400, 10.1016/j.neuroimage.2010.07.073
Chen, 2014, Survey of encoding and decoding of visual stimulus via fMRI: an image analysis perspective, Brain Imaging Behav, 8, 7, 10.1007/s11682-013-9238-z
Van Gerven, 2017, A primer on encoding models in sensory neuroscience, J Math Psychol, 76, 172, 10.1016/j.jmp.2016.06.009
Kay, 2013, A two-stage cascade model of BOLD responses in human visual cortex, PLoS Comput Biol, 9, 10.1371/journal.pcbi.1003079
St-Yves, 2018, The feature-weighted receptive field: an interpretable encoding model for complex feature spaces, NeuroImage, 180, 188, 10.1016/j.neuroimage.2017.06.035
Haxby, 2001, Distributed and overlapping representations of faces and objects in ventral temporal cortex, Science, 293, 2425, 10.1126/science.1063736
Haynes, 2006, Decoding mental states from brain activity in humans, Nat Rev Neurosci, 7, 523, 10.1038/nrn1931
Naselaris, 2009, Bayesian reconstruction of natural images from human brain activity, Neuron, 63, 902, 10.1016/j.neuron.2009.09.006
Horikawa, 2013, Neural decoding of visual imagery during sleep, Science, 340, 639, 10.1126/science.1234330
Miyawaki, 2008, Visual image reconstruction from human brain activity using a combination of multiscale local image decoders, Neuron, 60, 915, 10.1016/j.neuron.2008.11.004
Fujiwara, 2013, Modular encoding and decoding models derived from bayesian canonical correlation analysis, Neural Comput, 25, 979, 10.1162/NECO_a_00423
Yu S, Zheng N, Ma Y, Wu H, Chen B. A novel brain decoding method: a correlation network framework for revealing brain connections. 2017. arXiv:1712.01668.
Schoenmakers, 2013, Linear reconstruction of perceived images from human brain activity, NeuroImage, 83, 951, 10.1016/j.neuroimage.2013.07.043
Schoenmakers, 2015, Gaussian mixture models and semantic gating improve reconstructions from human brain activity, Front Comput Neurosci, 8, 173, 10.3389/fncom.2014.00173
Cowen, 2014, Neural portraits of perception: reconstructing face images from evoked brain activity, NeuroImage, 94, 12, 10.1016/j.neuroimage.2014.03.018
Lee, 2016, Reconstructing perceived and retrieved faces from activity patterns in lateral parietal cortex, J Neurosci, 36, 6069, 10.1523/JNEUROSCI.4286-15.2016
Güçlütürk Y, Güçlü U, Seeliger K, Bosch S, Van Lier R, Van Gerven MA. Reconstructing perceived faces from brain activations with deep adversarial neural decoding. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al., editors. Advances in neural information processing systems 30 (NIPS 2017) La Jolla: Neural Information Processing Systems Foundation; 2017. p. 4249–60.
Wen, 2018, Neural encoding and decoding with deep learning for dynamic natural vision, Cereb Cortex, 28, 4136, 10.1093/cercor/bhx268
Horikawa, 2017, Hierarchical neural representation of dreamed objects revealed by brain decoding with deep neural network features, Front Comput Neurosci, 11, 4, 10.3389/fncom.2017.00004
Naselaris, 2015, A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes, NeuroImage, 105, 215, 10.1016/j.neuroimage.2014.10.018
Zeidman, 2018, Bayesian population receptive field modelling, NeuroImage, 180, 173, 10.1016/j.neuroimage.2017.09.008
Güçlü, 2015, Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream, J Neurosci, 35, 10005, 10.1523/JNEUROSCI.5023-14.2015
Huth, 2016, Natural speech reveals the semantic maps that tile human cerebral cortex, Nature, 532, 453, 10.1038/nature17637
Shirer, 2012, Decoding subject-driven cognitive states with whole-brain connectivity patterns, Cereb Cortex, 22, 158, 10.1093/cercor/bhr099
Mokhtari, 2013, Decoding brain states using backward edge elimination and graph kernels in fMRI connectivity networks, J Neurosci Methods, 212, 259, 10.1016/j.jneumeth.2012.10.012
Yargholi, 2016, Brain decoding-classification of hand written digits from fMRI data employing Bayesian networks, Front Hum Neurosci, 10, 351, 10.3389/fnhum.2016.00351
Yargholi, 2016, Reconstruction of digit images from human brain fMRI activity through connectivity informed Bayesian networks, J Neurosci Methods, 257, 159, 10.1016/j.jneumeth.2015.09.032
Manning, 2018, A probabilistic approach to discovering dynamic full-brain functional connectivity patterns, NeuroImage, 180, 243, 10.1016/j.neuroimage.2018.01.071
Du, 2017, Sharing deep generative representation for perceived image reconstruction from human brain activity, 1049
Han, 2019, Variational autoencoder: an unsupervised model for modeling and decoding fMRI activity in visual cortex, NeuroImage, 198, 125, 10.1016/j.neuroimage.2019.05.039
Seeliger, 2018, Generative adversarial networks for reconstructing natural images from brain activity, NeuroImage, 181, 775, 10.1016/j.neuroimage.2018.07.043
Kuo, 2014, Decoding and encoding of visual patterns using magnetoencephalographic data represented in manifolds, NeuroImage, 102, 435, 10.1016/j.neuroimage.2014.07.046
LeCun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539
Schmidhuber, 2015, Deep learning in neural networks: an overview, Neural Netw, 61, 85, 10.1016/j.neunet.2014.09.003
McCulloch, 1943, A logical calculus of the ideas immanent in nervous activity, Bull Math Biophys, 5, 115, 10.1007/BF02478259
Cox, 2014, Neural networks and neuroscience-inspired computer vision, Curr Biol, 24, R921, 10.1016/j.cub.2014.08.026
Cichy, 2016, Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence, Sci Rep, 6, 27755, 10.1038/srep27755
Eickenberg, 2017, Seeing it all: convolutional network layers map the function of the human visual system, NeuroImage, 152, 184, 10.1016/j.neuroimage.2016.10.001
DiCarlo, 2012, How does the brain solve visual object recognition?, Neuron, 73, 415, 10.1016/j.neuron.2012.01.010
DiCarlo, 2007, Untangling invariant object recognition, Trends Cogn Sci, 11, 333, 10.1016/j.tics.2007.06.010
Li, 2016, Visual information processing mechanism revealed by fMRI data, 85
Higgins I, Matthey L, Glorot X, Pal A, Uria B, Blundell C, et al. Early visual concept learning with unsupervised deep learning. 2016. arXiv:1606.05579.
Kingma DP, Welling M. Auto-encoding variational Bayes. 2014. arXiv:1312.6114.
Rezende DJ, Mohamed S, Wierstra D. Stochastic backpropagation and approximate inference in deep generative models. In: Ghahramani Z, Welling M, Cortes C, Lawrenc ND, Weinberger KQ, editors. Advances in neural information processing systems (NIPS 2014) La Jolla: Neural Information Processing Systems Foundation; 2014. p. 1278–86.
Goodfellow I, Abadie JP, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrenc ND, Weinberger KQ, editors. Advances in Neural Information Processing Systems (NIPS 2014) La Jolla: Neural Information Processing Systems Foundation; 2014. p. 2672–80.
St-Yves, 2018, Generative adversarial networks conditioned on brain activity reconstruct seen images
Shen, 2019, End-to-end deep image reconstruction from human brain activity, Front Comput Neurosci, 13, 21, 10.3389/fncom.2019.00021
Kulkarni TD, Whitney WF, Kohli P, Tenenbaum J. Deep convolutional inverse graphics network. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R, editors. Advances in neural information processing systems 28 (NIPS 2015) La Jolla: Neural Information Processing Systems Foundation; 2015. p. 2539–47.
Eslami SA, Heess N, Weber T, Tassa Y, Szepesvari D, Hinton GE, et al. Attend, infer, repeat: fast scene understanding with generative models. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R, editors. Advances in neural information processing systems 29 (NIPS 2016) La Jolla: Neural Information Processing Systems Foundation; 2016. p. 3225–33.
Norman, 2006, Beyond mind-reading: multi-voxel pattern analysis of fMRI data, Trends Cogn Sci, 10, 424, 10.1016/j.tics.2006.07.005
Isola P, Zhu J, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. 2016. arXiv:1611.07004.
Liu M, Breuel T, Kautz J. Unsupervised image-to-image translation networks. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al., editors. Advances in neural information processing systems 30 (NIPS 2017) La Jolla: Neural Information Processing Systems Foundation; 2017. p. 700–8.
Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H. Generative adversarial text to image synthesis. 2016. arXiv:1605.05396.
Hong S, Yang D, Choi J, Lee H. Inferring semantic layout for hierarchical text-to-image synthesis. 2018. arXiv:1801.05091.
He D, Xia Y, Qin T, Wang L, Yu N, Liu T, et al. Dual learning for machine translation. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R, editors. Advances in neural information processing systems 29 (NIPS 2016) La Jolla: Neural Information Processing Systems Foundation; 2016. p. 820–8.
Xia Y, Qin T, Chen W, Bian J, Yu N, Liu T. Dual supervised learning. In: Proceedings of the 34th International Conference on Machine Learning; 2017 Aug 6–11; Sydney, Australia. Brookline: Microtome Publishing; 2017. p. 3789–98.
Xia Y, Tan X, Tian F, Qin T, Yu N, Liu T. Model-level dual learning. In: Proceedings of the 35th International Conference on Machine Learning; 2018 Jul 10–15; Stockholm, Sweden. Brookline: Microtome Publishing; 2018. p. 5379–88.
Zhu, 2017, Unpaired image-to-Image translation using cycle-consistent adversarial networks, 2242