Braid group actions on derived categories of coherent sheaves

Duke Mathematical Journal - Tập 108 Số 1 - 2001
Paul Seidel, R. P. Thomas

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. Bernstein and V. Lunts, <i>Equivariant Sheaves and Functors</i>, Lecture Notes in Math. <b>1578</b>, Springer, Berlin, 1994. MR 95k:55012

A. I. Bondal and M. M. Kapranov, <i>Representable functors, Serre functors, and mutations</i>, Math. USSR-Izv. <b>35</b> (1990), 519--541. MR 91b:14013

--. --. --. --., <i>Enhanced triangulated categories</i>, Math. USSR-Sb. <b>70</b> (1991), 93--107.

A. I. Bondal and D. Orlov, <i>Semiorthogonal decomposition for algebraic varieties</i>.

--------, <i>Reconstruction of a variety from the derived category and groups of autoequivalences</i>.

A. I. Bondal and A. E. Polishchuk, <i>Homological properties of associative algebras: The method of helices</i> (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. <b>57</b> (1993), 3--50.

English translation in Russian Acad. Sci. Izv. Math. <b>42</b> (1994), 219--260. MR 94m:16011

T. Bridgeland, <i>Equivalences of triangulated categories and Fourier-Mukai transforms</i>, Bull. London Math. Soc. <b>31</b> (1999), 25--34. MR 99k:18014

T. Bridgeland, A. King, and M. Reid, <i>Mukai implies McKay: The McKay correspondence as an equivalence of derived categories</i>.

C. H. Clemens, <i>Double solids</i>, Adv. Math. <b>47</b> (1983), 107--230. MR 85e:14058

A. Craw and M. Reid, <i>How to calculate $A$-$\Hilb \mathbb C^3$</i>.

P. Deligne, <i>Action du groupe des tresses sur une catégorie</i>, Invent. Math. <b>128</b> (1997), 159--175. MR 98b:20061

W. Ebeling, ``Strange duality, mirror symmetry, and the Leech lattice'' in <i>Singularity Theory (Liverpool, 1996)</i>, London Math. Soc. Lecture Note Ser. <b>263</b>, Cambridge Univ. Press, Cambridge, England, 1999, xv --.xvi, 55--77. MR 2000g:14045

W. Ebeling, ``Strange duality, mirror symmetry, and the Leech lattice'' in <i>Singularity Theory (Liverpool, 1996)</i>, London Math. Soc. Lecture Note Ser. <b>263</b>, Cambridge Univ. Press, Cambridge, England, 1999, xv --.xvi, 55--77. MR 2000g:14045

A. Fathi, F. Laudenbach, and V. Poénaru, <i>Travaux de Thurston sur les surfaces</i>, Astérisque <b>66</b> <b>128</b> (1997), 159--175. MR 98b:20061

A. Fathi, F. Laudenbach, and V. Poénaru, <i>Travaux de Thurston sur les surfaces</i>, Astérisque <b>66</b>--<b>67</b>, Soc. Math. France, Montrouge, 1979. MR 82m:57003

S. I. Gelfand and Yu. I. Manin, <i>Methods of Homological Algebra</i>, Springer, Berlin, 1996. MR 97j:18001

M. Gerstenhaber and S. Schack, ``Algebraic cohomology and deformation theory'' in <i>Deformation Theory of Algebras and Structures and Applications (Il Ciocco, Italy, 1986)</i>, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. <b>247</b>, Kluwer, Dordrecht, 1988, 11--264. MR 90c:16016

M. Gross, <i>Blabber about black holes</i>, unpublished notes.

A. Grothendieck and J. Dieudonné, <i>Élements de géométrie algebrique, I: Le langage des schemas</i>, Inst. Hautes Études Sci. Publ. Math. <b>4</b> (1960). MR 29:1207

V. K. A. M. Gugenheim, L. A. Lambe, and J. D. Stasheff, <i>Algebraic aspects of Chen's twisting cochain</i>, Illinois J. Math. <b>34</b> (1990), 485--502. MR 91c:55018

S. Halperin and J. Stasheff, <i>Obstructions to homotopy equivalences</i>, Adv. Math. <b>32</b> (1979), 233--279. MR 80j:55016

R. Hartshorne, <i>Residues and Duality</i>, Lecture Notes in Math. <b>20</b>, Springer, Berlin, 1966. MR 36 #5145

--------, <i>Algebraic Geometry</i>, Grad. Texts in Math. <b>52</b>, Springer, New York, 1977. MR 57 #3116

R. P. Horja, <i>Hypergeometric functions and mirror symmetry in toric varieties</i>.

T. V. Kadeishvili, <i>The structure of the $A_\infty$</i>-algebra, and the Hochschild and Harrison cohomologies (in Russian), Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR <b>91</b> (1988), 19--27. MR 91a:18016

M. Kapranov and E. Vasserot, <i>Kleinian singularities, derived categories and Hall algebras</i>, Math. Ann. <b>316</b> (2000), 565--576. MR CMP 1 752 785

B. Keller, <i>A remark on tilting theory and $DG$</i> algebras, Manuscripta Math. <b>79</b> (1993), 247--252. MR 94d:18016

--. --. --. --., <i>On the cyclic homology of exact categories</i>, J. Pure Appl. Algebra <b>136</b> (1999), 1--56. MR 99m:18012

--------, <i>Introduction to $A_\infty$</i>-algebras and modules.

M. Khovanov and P. Seidel, <i>Quivers, Floer cohomology, and braid group actions</i>.

M. Kobayashi, <i>Duality of weights, mirror symmetry and Arnold's strange duality</i>.

M. Kontsevich, ``Homological algebra of mirror symmetry'' in <i>Proceedings of the International Congress of Mathematicians (Zürich, 1994), Vol. 1,2</i>, Birkhäuser, Basel, 1995, 120--139. MR 97f:32040

S. Kuleshov, ``Exceptional bundles on $K3$ surfaces'' in <i>Helices and Vector Bundles: Seminaire Rudakov</i>, London Math. Soc. Lecture Note Ser. <b>148</b>, Cambridge Univ. Press, Cambridge, England, 105--114. MR 91m:14067

A. Maciocia, <i>Generalized Fourier-Mukai transforms</i>, J. Reine Angew. Math. <b>480</b> (1996), 197--211. MR 97g:14013 \enlargethispage10pt

J. McKay, ``Graphs, singularities, and finite groups'' in <i>The Santa Cruz Conference on Finite Groups (Santa Cruz, Calif., 1979)</i>, Proc. Sympos. Pure Math. <b>37</b>, Amer. Math. Soc., Providence, 1980, 183--186. MR 82e:20014

J. C. Moore, <i>Algèbre homologique et homologie des espaces classifiants</i>, Séminaire Henri Cartan 1959/1960, exp. no. 7. MR 28 #1092

--. --. --. --., ``Differential homological algebra'' in <i>Actes du Congrès International des Mathématiciens (Nice, 1970), Vol. 1</i>, Gauthier-Villars, Paris, 1971, 335--339. MR 55 #9128

D. R. Morrison, ``Through the looking glass'' in <i>Mirror Symmetry (Montreal, 1995), III,</i> AMS/IP Stud. Adv. Math. <b>10</b>, Amer. Math. Soc., Providence, 1999, 263--277. MR 2000d:14049

S. Mukai, <i>Duality between $D(X)$</i> and $D(\hat{X})$ with its application to Picard sheaves, Nagoya Math. J. <b>81</b> (1981), 153--175. MR 82f:14036

--. --. --. --., ``On the moduli space of bundles on $K3$ surfaces, I'' in <i>Vector Bundles on Algebraic Varieties (Bombay, 1984)</i>, Tata Inst. Fund. Res. Stud. Math. <b>11</b>, Tata Inst. Fund. Res., Bombay, 1987, 341--413. MR 88i:14036

I. Nakamura, <i>Hilbert schemes of Abelian group orbits</i>, to appear in J. Algebraic Geom.

D. O. Orlov, ``Equivalences of derived categories and $K3$ surfaces'' in <i>Algebraic Geometry, 7</i>, J. Math. Sci. (New York) <b>84</b> (1997), 1361--1381. MR 99a:14054

--------, <i>On equivalences of derived categories of coherent sheaves on abelian varieties</i>.

H. Pinkham, <i>Singularités exceptionnelles, la dualité étrange d'Arnold et les surfaces $K3$</i>, C. R. Acad. Sci. Paris Sér. A-B <b>284</b> (1977), A615--A618. MR 55 #2886

A. Polishchuk, <i>Symplectic biextensions and a generalization of the Fourier-Mukai transform</i>, Math. Res. Lett. <b>3</b> (1996), 813--828. MR 97j:14051

--------, <i>Massey and Fukaya products on elliptic curves</i>. (revised version, July 1999).

A. Polishchuk and E. Zaslow, <i>Categorical mirror symmetry: The elliptic curve</i>, Adv. Theor. Math. Phys. <b>2</b> (1998), 443--470. MR 99j:14034

J. Rickard, <i>Morita theory for derived categories</i>, J. London Math. Soc. (2) <b>39</b> (1989), 436--456. MR 91b:18012

A. N. Rudakov et al., <i>Helices and Vector Bundles: Seminaire Rudakov</i>, London Math. Soc. Lecture Note Ser. <b>148</b>, Cambridge Univ. Press, Cambridge, England, 1990. MR 91e:14002

P. Seidel, <i>Lagrangian two-spheres can be symplectically knotted</i>, J. Differential Geom. <b>52</b> (1999), 145--171. MR CMP 1 743 463

--. --. --. --., <i>Graded Lagrangian submanifolds</i>, Bull. Soc. Math. France <b>128</b> (2000), 103--149. MR CMP 1 765 826

--------, <i>An exact sequence for symplectic Floer homology</i>, in preparation.

A. Strominger, S.-T. Yau, and E. Zaslow, <i>Mirror symmetry is $T$\!-duality</i>, Nuclear Phys. B <b>479</b> (1996), 243--259. MR 97j:32022

D. Tanré, ``Cohomologie de Harrison et type d'homotopie rationelle'' in <i>Algebra, Algebraic Topology and Their Interactions (Stockholm, 1983)</i>, Lecture Notes in Math. <b>1183</b>, Springer, Berlin, 1986, 361--370. MR 87m:55015

R. P. Thomas, ``Mirror symmetry and actions of braid groups on derived categories'' in <i>Proceedings of the Harvard Winter School on Mirror Symmetry, Vector Bundles, and Lagrangian Cycles (Cambridge, Mass., 1999)</i>, International Press, Cambridge, Mass., 2001.