Bradyrhizobium altum sp. nov., Bradyrhizobium oropedii sp. nov. and Bradyrhizobium acaciae sp. nov. from South Africa show locally restricted and pantropical nodA phylogeographic patterns
Tài liệu tham khảo
Ahnia, 2018, Bradyrhizobium algeriense sp. nov., a novel species isolated from effective nodules of Retama sphaerocarpa from Northeastern Algeria, Syst. Appl. Microbiol., 41, 333, 10.1016/j.syapm.2018.03.004
Altschul, 1990, Basic local alignment search tool, J. Mol. Biol., 215, 403, 10.1016/S0022-2836(05)80360-2
Amrani, 2010, Phenotypic and genotypic characterization of rhizobia associated with Acacia saligna (Labill.) Wendl. in nurseries from Algeria, Syst. Appl. Microbiol., 33, 44, 10.1016/j.syapm.2009.09.003
Aserse, 2012, Phylogenetically diverse groups of Bradyrhizobium isolated from nodules of Crotalaria spp., Indigofera spp., Erythrina brucei and Glycine max growing in Ethiopia, Mol. Phylogen. Evol., 65, 595, 10.1016/j.ympev.2012.07.008
Aserse A.A., Woyke T., Kyrpides N.C., Whitman W.B., Lindström K., 2017. Draft genome sequences of Bradyrhizobium shewense sp. nov. ERR11T and Bradyrhizobium yuanmingense CCBAU 10071T. Stand. Genom. Sci., 12, 74.
Avontuur, 2019, Genome-informed Bradyrhizobium taxonomy: where to from here?, Syst. Appl. Microbiol., 42, 427, 10.1016/j.syapm.2019.03.006
Banasiewicz J., Lisboa B.B., Da Costa P.B., Schlindwein G., Venter S.N., Steenkamp E.T., Vargas L.K., Passaglia L.M., Stepkowski T., 2021. Culture-independent assessment of the diazotrophic Bradyrhizobium communities in the Pampa and Atlantic Forest Biomes localities in southern Brazil. Syst. Appl. Microbiol., 126228.
Benson, 2004, GenBank: update, Nucleic Acids Res., 32, D23, 10.1093/nar/gkh045
Beukes, 2016, Crotalarieae and Genisteae of the South African Great Escarpment are nodulated by novel Bradyrhizobium species with unique and diverse symbiotic loci, Mol. Phylogen. Evol., 100, 206, 10.1016/j.ympev.2016.04.011
Boshoff, 2015
Brockwell, 1995, Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment, Plant Soil, 174, 143, 10.1007/BF00032245
Bromfield, 2021, Bradyrhizobium septentrionale sp. nov. (sv. septentrionale) and Bradyrhizobium quebecense sp. nov. (sv. septentrionale) associated with legumes native to Canada possess rearranged symbiosis genes and numerous insertion sequences, Int. J. Syst. Evol. Microbiol., 71, 10.1099/ijsem.0.004831
Bromfield, 2019, Description and complete genome sequence of Bradyrhizobium amphicarpaeae sp. nov., harbouring photosystem and nitrogen-fixation genes, Int. J. Syst. Evol. Microbiol., 69, 2841, 10.1099/ijsem.0.003569
Bromfield E.S., Cloutier S., Nguyen H.D., 2019b. Description and complete genome sequences of Bradyrhizobium symbiodeficiens sp. nov., a non-symbiotic bacterium associated with legumes native to Canada. Int. J. Syst. Evol. Microbiol., ijsem003772.
Bünger, 2018, Bradyrhizobium ripae sp. nov., a nitrogen-fixing symbiont isolated from nodules of wild legumes in Namibia, Int. J. Syst. Evol. Microbiol., 68, 3688, 10.1099/ijsem.0.002955
Chaintreuil, 2000, Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata, Appl. Environ. Microbiol., 66, 5437, 10.1128/AEM.66.12.5437-5447.2000
Chun J., Oren A., Ventosa A., Christensen H., Arahal D.R., Da Costa M.S., Rooney A.P., Yi H., Xu X.-W., De Meyer S., 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol., 68, 461-466.
Ciufo S., Kannan S., Sharma S., Badretdin A., Clark K., Turner S., Brover S., Schoch C.L., Kimchi A. Dicuccio M., 2018. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int. J. Syst. Evol. Microbiol., 68, 2386.
Cleenwerck, 2002, Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov, Int. J. Syst. Evol. Microbiol., 52, 1551
Martins da Costa, 2018, Bradyrhizobium forestalis sp. nov., an efficient nitrogen-fixing bacterium isolated from nodules of forest legume species in the Amazon, Arch. Microbiol., 200, 743, 10.1007/s00203-018-1486-2
Martins da Costa, 2017, Bradyrhizobium brasilense sp. nov., a symbiotic nitrogen-fixing bacterium isolated from Brazilian tropical soils, Arch. Microbiol., 199, 1211, 10.1007/s00203-017-1390-1
De Lajudie P.M., Andrews M., Ardley J., Eardly B., Jumas-Bilak E., Kuzmanović N., Lassalle F., Lindström K., Mhamdi R., Martínez-Romero E., 2019. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int. J. Syst. Evol. Microbiol.
de Matos, 2017, Bradyrhizobium sacchari sp. nov., a legume nodulating bacterium isolated from sugarcane roots, Arch. Microbiol., 199, 1251, 10.1007/s00203-017-1398-6
De Oliveira Urquiaga, 2019, Bradyrhizobium frederickii sp. nov., a nitrogen-fixing lineage isolated from nodules of the caesalpinioid species Chamaecrista fasciculata and characterized by tolerance to high temperature in vitro, Int. J. Syst. Evol. Microbiol., 69, 3863, 10.1099/ijsem.0.003697
Degefu, 2017, Phylogenetically diverse groups of Bradyrhizobium isolated from nodules of tree and annual legume species growing in Ethiopia, Syst. Appl. Microbiol., 40, 205, 10.1016/j.syapm.2017.04.001
Delamuta, 2012, Multilocus sequence analysis (MLSA) of Bradyrhizobium strains: revealing high diversity of tropical diazotrophic symbiotic bacteria, Braz. J. Microbiol., 43, 698, 10.1590/S1517-83822012000200035
Delamuta, 2013, Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov, Int. J. Syst. Evol. Microbiol., 63, 3342, 10.1099/ijs.0.049130-0
Delamuta, 2015, Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes, Int. J. Syst. Evol. Microbiol., 65, 4424, 10.1099/ijsem.0.000592
Drew, 2012
Elsheikh, 1998, Effects of salt on rhizobia and bradyrhizobia: a review, Ann. Appl. Biol., 132, 507, 10.1111/j.1744-7348.1998.tb05226.x
Estrada-De Los Santos P., Palmer M., Chávez-Ramírez B., Beukes C., Steenkamp E., Briscoe L., Khan N., Maluk M., Lafos M., Humm E., 2018. Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes, 9, 389.
Fossou R.K., Pothier J.F., Zézé A., Perret X., 2020. Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d’Ivoire. Int. J. Syst. Evol. Microbiol., ijsem003931.
Gerhardt, 1994, Methods for General and Molecular Bacteriology, American Society for
Gevers, 2006, Stepping stones towards a new prokaryotic taxonomy, Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 1911, 10.1098/rstb.2006.1915
Gogoi, 2018, 511
Goris, 2007, DNA–DNA hybridization values and their relationship to whole-genome sequence similarities, Int. J. Syst. Evol. Microbiol., 57, 81, 10.1099/ijs.0.64483-0
Grönemeyer, 2017, Bradyrhizobium namibiense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of Lablab purpureus, hyacinth bean, in Namibia, Int. J. Syst. Evol. Microbiol., 67, 4884, 10.1099/ijsem.0.002039
Grönemeyer, 2015, Bradyrhizobium subterraneum sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts, Int. J. Syst. Evol. Microbiol., 65, 3241, 10.1099/ijsem.0.000403
Grönemeyer, 2016, Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis, Int. J. Syst. Evol. Microbiol., 66, 62, 10.1099/ijsem.0.000674
Grönemeyer, 2015, Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses, Int. J. Syst. Evol. Microbiol., 65, 4886, 10.1099/ijsem.0.000666
Grönemeyer, 2018, 9
Guerrouj, 2013, Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma, Syst. Appl. Microbiol., 36, 218, 10.1016/j.syapm.2013.03.001
Hall T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series, 1999. [London]: Information Retrieval Ltd., c1979-c2000., 95-98.
Helene, 2017, Bradyrhizobium mercantei sp. nov., a nitrogen-fixing symbiont isolated from nodules of Deguelia costata (syn. Lonchocarpus costatus), Int. J. Syst. Evol. Microbiol., 67, 1827, 10.1099/ijsem.0.001870
Helene, 2015, Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services, Int. J. Syst. Evol. Microbiol., 65, 4441, 10.1099/ijsem.0.000591
Helene L.C.F., Klepa M.S., O’hara G., Hungria M., 2020a. Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., isolated from nodules of legumes indigenous to Western Australia. Int. J. Syst. Evol. Microbiol., 70, 4623-4636.
Ferraz Helene, 2020, Characterization of Bradyrhizobium strains indigenous to Western Australia and South Africa indicates remarkable genetic diversity and reveals putative new species, Syst. Appl. Microbiol., 43, 126053, 10.1016/j.syapm.2020.126053
Hoveka, 2020, Identifying biodiversity knowledge gaps for conserving South Africa’s endemic flora, Biodivers. Conserv., 29, 2803, 10.1007/s10531-020-01998-4
Howieson J., Dilworth M. 2016. Working with rhizobia, Australian centre for international agricultural research Canberra.
Hungria, 2015, Bradyrhizobium, the ancestor of all rhizobia: phylogeny of housekeeping and nitrogen-fixation genes, Biological Nitrogen Fixation, 2, 191, 10.1002/9781119053095.ch18
Jain C., Dilthey A., Koren S., Aluru S., Phillippy A.M. A fast approximate algorithm for mapping long reads to large reference databases. International Conference on Research in Computational Molecular Biology, 2017. Springer, 66-81.
Jain, 2018, High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries, Nature communications, 9, 5114, 10.1038/s41467-018-07641-9
Jaiswal, 2019, 10
Jang, 2018, Presence of Cu-Type (NirK) and cd1-Type (NirS) Nitrite Reductase Genes in the Denitrifying Bacterium Bradyrhizobium nitroreducens sp. nov, Microbes Environ., 33, 326, 10.1264/jsme2.ME18039
Jensen, 2003, How can increased use of biological N 2 fixation in agriculture benefit the environment?, Plant Soil, 252, 177, 10.1023/A:1024189029226
Jones, 2016, Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes–a genome comparison, Scientific Reports, 6, 25858, 10.1038/srep25858
Jordan, 1982, Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants, Int. J. Syst. Evol. Microbiol., 32, 136
Katoh K., Rozewicki J., Yamada K.D., 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. in Bioinformatics.
Katoh, 2008, Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework, BMC Bioinform., 9, 212, 10.1186/1471-2105-9-212
Kim, 2014, Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes, Int. J. Syst. Evol. Microbiol., 64, 346, 10.1099/ijs.0.059774-0
Klepa, 2019, Bradyrhizobium niftali sp. nov., an effective nitrogen-fixing symbiont of partridge pea [Chamaecrista fasciculata (Michx.) Greene], a native caesalpinioid legume broadly distributed in the USA, Int. J. Syst. Evol. Microbiol., 69, 3448, 10.1099/ijsem.0.003640
Klepa, 2019, Bradyrhizobium agreste sp. nov., Bradyrhizobium glycinis sp. nov. and Bradyrhizobium diversitatis sp. nov., isolated from a biodiversity hotspot of the genus Glycine in Western Australia, Int. J. Syst. Evol. Microbiol., 71, 10.1099/ijsem.0.004742
Konstantinidis, 2005, Genomic insights that advance the species definition for prokaryotes, PNAS, 102, 2567, 10.1073/pnas.0409727102
Kück, 2014, FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies, Front. Zool., 11, 81, 10.1186/s12983-014-0081-x
Lewis G.P. 2005. Legumes of the World, Royal Botanic Gardens Kew.
Li, 2019, Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China, Syst. Appl. Microbiol., 42, 126002, 10.1016/j.syapm.2019.126002
Librado, 2009, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinform., 25, 1451, 10.1093/bioinformatics/btp187
Lindström, 2010, The biodiversity of beneficial microbe-host mutualism: the case of rhizobia, Res. Microbiol., 161, 453, 10.1016/j.resmic.2010.05.005
Margulies, 2005, Genome sequencing in microfabricated high-density picolitre reactors, Nature, 437, 376, 10.1038/nature03959
Menna, 2006, Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants, Syst. Appl. Microbiol., 29, 315, 10.1016/j.syapm.2005.12.002
Menna, 2009, Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes, Int. J. Syst. Evol. Microbiol., 59, 2934, 10.1099/ijs.0.009779-0
Menna, 2011, Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer, Int. J. Syst. Evol. Microbiol., 61, 3052, 10.1099/ijs.0.028803-0
Michel, 2020, Bradyrhizobium uaiense sp. nov., a new highly efficient cowpea symbiont, Arch., Microbiol, 1
Moulin, 2004, Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus, Mol. Phylogen. Evol., 30, 720, 10.1016/S1055-7903(03)00255-0
Na, 2018, UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction, J. Microbiol., 56, 280, 10.1007/s12275-018-8014-6
Naamala, 2016, Microsymbiont diversity and phylogeny of native bradyrhizobia associated with soybean (Glycine max L. Merr.) nodulation in South African soils, Syst. Appl. Microbiol., 39, 336, 10.1016/j.syapm.2016.05.009
Okazaki, 2015, Genome analysis of a novel Bradyrhizobium sp. DOA9 carrying a symbiotic plasmid, PloS one, 10, e0117392, 10.1371/journal.pone.0117392
Okubo T., Piromyou P., Tittabutr P., Teaumroong N., Minamisawa K., 2016. Origin and evolution of nitrogen fixation genes on symbiosis islands and plasmid in Bradyrhizobium. Microbes Environ., ME15159.
Ormeño-Orrillo, 2013, Phenotypic tests in Rhizobium species description: an opinion and (a sympatric speciation) hypothesis, Syst. Appl. Microbiol., 36, 145, 10.1016/j.syapm.2012.11.009
Palmer, 2020, All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy, Int. J. Syst. Evol. Microbiol., 70, 2937, 10.1099/ijsem.0.004124
Palmer, 2018, Genome-based characterization of biological processes that differentiate closely related bacteria, Front. Microbiol., 9, 10.3389/fmicb.2018.00113
Palmer, 2017, Phylogenomic resolution of the bacterial genus Pantoea and its relationship with Erwinia and Tatumella, Antonie Van Leeuwenhoek, 110, 1287, 10.1007/s10482-017-0852-4
Parker, 2015, The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia, Microb. Ecol., 69, 630, 10.1007/s00248-014-0503-5
Parks, 2020, A complete domain-to-species taxonomy for Bacteria and Archaea, Nat. Biotechnol., 38, 1079, 10.1038/s41587-020-0501-8
Puozaa, 2017, African origin of Bradyrhizobium populations nodulating Bambara groundnut (Vigna subterranea L. Verdc) in Ghanaian and South African soils, PloS one, 12, e0184943, 10.1371/journal.pone.0184943
Ramirez-Bahena, 2009, Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus, Int. J. Syst. Evol. Microbiol., 59, 1929, 10.1099/ijs.0.006320-0
Rejili, 2020, Bradyrhizobium hipponense sp. nov., isolated from Lupinus angustifolius growing in the northern region of Tunisia, Int. J. Syst. Evol. Microbiol., 70, 5539, 10.1099/ijsem.0.004445
Richter, 2009, Shifting the genomic gold standard for the prokaryotic species definition, PNAS, 106, 19126, 10.1073/pnas.0906412106
Rivas, 2009, Multilocus sequence analysis of the genus Bradyrhizobium, Syst. Appl. Microbiol., 32, 101, 10.1016/j.syapm.2008.12.005
Rodríguez-Echeverría, 2011, Jack-of-all-trades and master of many? How does associated rhizobial diversity influence the colonization success of Australian Acacia species?, Divers. Distrib., 17, 946, 10.1111/j.1472-4642.2011.00787.x
Somasegaran, 1994, 450
Sprent, 2007, Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation, New Phytol., 174, 11, 10.1111/j.1469-8137.2007.02015.x
Sprent, 2017, Biogeography of nodulated legumes and their nitrogen-fixing symbionts, New Phytol., 215, 40, 10.1111/nph.14474
Stamatakis A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinform., 30, 1312-1313.
Steenkamp, 2008, Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa, Mol. Phylogen. Evol., 48, 1131, 10.1016/j.ympev.2008.04.032
Steenkamp, 2015, Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa, Syst. Appl. Microbiol., 38, 545, 10.1016/j.syapm.2015.09.003
Stepkowski, 2018, Phylogeny and phylogeography of rhizobial symbionts nodulating legumes of the tribe Genisteae, Genes, 9, 163, 10.3390/genes9030163
Stepkowski, 2007, Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees, Appl. Environ. Microbiol., 73, 3254, 10.1128/AEM.02125-06
Stepkowski, 2005, European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa, Appl. Environ. Microbiol., 71, 7041, 10.1128/AEM.71.11.7041-7052.2005
Stepkowski, 2012, Distinct Bradyrhizobium communities nodulate legumes native to temperate and tropical monsoon Australia, Mol. Phylogen. Evol., 63, 265, 10.1016/j.ympev.2011.12.020
Stepkowski, 2011, Bradyrhizobium canariense and Bradyrhizobium japonicum are the two dominant rhizobium species in root nodules of lupin and serradella plants growing in Europe, Syst. Appl. Microbiol., 34, 368, 10.1016/j.syapm.2011.03.002
Sutcliffe, 2015, Challenging the anthropocentric emphasis on phenotypic testing in prokaryotic species descriptions: rip it up and start again, Front. Genet., 6, 218, 10.3389/fgene.2015.00218
Sutcliffe, 2012, A call to arms for systematists: revitalising the purpose and practises underpinning the description of novel microbial taxa, Antonie Van Leeuwenhoek, 101, 13, 10.1007/s10482-011-9664-0
Tavaré, 1986, Some probabilistic and statistical problems in the analysis of DNA sequences, Lectures on mathematics in the life sciences, 17, 57
VanInsberghe, 2015, Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils, The ISME journal, 9, 2435, 10.1038/ismej.2015.54
Venter, 2017, Practically delineating bacterial species with genealogical concordance, Antonie Van Leeuwenhoek, 110, 1311, 10.1007/s10482-017-0869-8
Vinuesa, 2008, Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic continent, Appl. Environ. Microbiol., 74, 6987, 10.1128/AEM.00875-08
Warrington, 2019, Cointroductions of Australian acacias and their rhizobial mutualists in the Southern Hemisphere, J. Biogeogr., 46, 1519, 10.1111/jbi.13602
Wasai-Hara S., Minamisawa K., Cloutier S., Bromfield E.S., 2020. Strains of Bradyrhizobium cosmicum sp. nov., isolated from contrasting habitats in Japan and Canada possess photosynthesis gene clusters with the hallmark of genomic islands. Int. J. Syst. Evol. Microbiol., 70, 5063.
Whitman, 2015, Genomic encyclopedia of bacterial and archaeal type strains, phase III: the genomes of soil and plant-associated and newly described type strains, Stand. Genom. Sci., 10
Zilli J.E., Baraúna A.C., Da Silva K., De Meyer S., Farias E.N., Kaminski P.E., Da Costa I.B., Ardley J.K., Willems A., Camacho N.N., 2014. Bradyrhizobium neotropicale sp. nov., isolated from effective nodules of Centrolobium paraense. Int. J. Syst. Evol. Microbiol., 64, 3950-3957.