Bousfield Localization and Algebras over Colored Operads
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barwick, C.: On left and right model categories and left and right Bousfield localizations. Homology, Homotopy Appl. 12(2), 245–320 (2010)
Batanin, M.: An operadic proof of the Baez-Dolan stabilisation hypothesis, In: Proceedings of the AMS. To appear. (2016)
Batanin, M., Berger, C.: Homotopy theory for algebras over polynomial monads. Theory Appl. Categ. 32, 148–253 (2017)
Batanin, M., White, D.: Bousfield Localization and Eilenberg-Moore Categories, preprint available electronically from arXiv: 1606.01537 (2016)
Berger, C., Moerdijk, I.: The Boardman-Vogt resolution of operads in monoidal model categories. Topology 45, 807–849 (2006)
Berger, C., Moerdijk, I.: Resolution of coloured operads and rectification of homotopy algebras. Contemp. Math. 431, 31–58 (2007)
Berger, C., Moerdijk, I.: On the derived category of an algebra over an operad. Georgian Math. J. 16, 13–28 (2009)
Blumberg, A.J., Hill, M.A.: Operadic multiplications in equivariant spectra, norms, and transfers, preprint, arXiv: 1309.1750 (2014)
Borceux, F.: Handbook of categorical algebra 2, categories and structures. Cambridge Univ. Press, Cambridge, UK.
Casacuberta, C., Gutiérrez, J. J., Moerdijk, I., Vogt, R.M.: Localization of algebras over coloured operads. Proc. Lond. Math Soc. (3) 101(1), 105–136 (2010)
Casacuberta, C., Raventos, O., Tonks, A.: Comparing Localizations Across Adjunctions, preprint, available electronically from arXiv: 1404.7340 (2014)
Elmendorf, A.D., Mandell, M.A.: Rings, modules, and algebras in infinite loop space theory. Adv. Math. 205, 163–228 (2006)
Elmendorf, A.D., Kriz, I., Mandell, M.A., May, J.P.: Rings, modules, and algebras in stable homotopy theory. Math Surveys and Monographs, vol. 47, Amer. Math. Soc., Providence, RI (1997)
Farjoun, E.D.: Cellular spaces, null spaces and homotopy localization. Lecture Notes in Math., vol. 1622. Springer-Verlag, Berlin (1996)
Frégier, Y., Markl, M., Yau, D.: The l ∞ $l_{\infty }$ -deformation complex of diagrams of algebras. New York J. Math. 15, 353–392 (2009)
Fresse, B.: Props in model categories and homotopy invariance of structures. Georgian Math. J. 17, 79–160 (2010)
Fresse, B.: Modules over operads, and functors. Lecture Notes in Math., vol. 1967. Springer-Verlag, Berlin (2009)
Gutiérrez, J. J., Röndigs, O., Spitzweck, M., Ostvær, P. A.: Motivic slices and colored operads. Journal of Topology 5, 727–755 (2012)
Harper, J.E.: Homotopy theory of modules over operads in symmetric spectra. Algebr. Geom. Topol. 9(3), 1637–1680 (2009)
Harper, J.E.: corrigendum 15, 1229–1238 (2015). 53
Harper, J.E.: Homotopy theory of modules over operads and non- Σ operads in monoidal model categories. J. Pure Appl. Algebra 214, 1407–1434 (2010)
Harper, J.E., Hess, K.: Homotopy completion and topological Quillen homology of structured ring spectra. Geom. Topol. 17(3), 1325–1416 (2013)
Hill, M.A., Hopkins, M.J.: Equivariant localizations and commutative rings, preprint available electronically from arXiv: 1303.4479 (2014)
Hill, M.A., Hopkins, M.J., Ravenel, D.C.: On the non-existence of elements of kervaire invariant one, version 4, preprint available electronically from arXiv: 0908.3724 (2015)
Hirschhorn, P.S.: Model Categories and Their Localizations. Math. Surveys and Monographs, vol. 99. Amer. Math. Soc., Providence, RI (2003)
Hovey, M.: Model categories. Math. Surveys and Monographs, vol. 63. Amer. Math. Soc., Providence, RI (1999)
Hovey, M.: Monoidal model categories, preprint available electronically from arXiv: math/9803002
Johnson, M.W., Yau, D.: On homotopy invariance for algebras over colored PROPs. J. Homotopy and Related Structures 4, 275–315 (2009)
Kedziorek, M.: PhD Thesis, Sheffield University. Available electronically from http://etheses.whiterose.ac.uk/7699/ (2015)
Mac Lane, S.: Categories for the working mathematician, 2nd edn, vol. 5. Springer-Verlag, New York (1998)
Mandell, M.A., May, J.P., Schwede, S., Shipley, B.: Model categories of diagram spectra. Proc. London Math. Soc. (3) 82(2), 441–512 (2001)
McClure, J.E., Smith, J.H.: A solution of Deligne’s Hochschild cohomology conjecture. In: Proceedings of the JAMI conference on Homotopy Theory. Contemp. Math. 293, 153–193 (2002)
Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics, math surveys and monographs, vol. 96. Amer. Math. Soc., Providence (2002)
Pavlov, D., Scholbach, J.: Admissibility and rectification of colored symmetric operads, preprint available electronically from arXiv: 1410.5675 (2014)
Rezk, C.W.: Spaces of algebra structures and cohomology of operads, Ph.D. thesis MIT (1996)
Schwede, S., Shipley, B.: Algebras and modules in monoidal model categories. Proc. London Math. Soc. 80, 491–511 (2000)
Shipley, B.: A convenient model category for commutative ring spectra Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory, vol. 346, Contemp. Math., pp 473–483. Amer. Math. Soc., Providence, RI (2004)
Spitzweck, M.: Operads, algebras and modules in general model categories, preprint available electronically from arXiv: math/0101102 (2001)
White, D.: Model structures on commutative monoids in general model categories, accepted, Journal of Pure and Applied Algebra, available electronically from arXiv: 1403.6759 (2017)
White, D.: Monoidal Bousfield localizations and algebras over operads, preprint available electronically from arXiv: 1404.5197 (2014)
White, D.: Monoidal Bousfield localizations and algebras over operads. Thesis, (Ph.D.)-Wesleyan University (2014)
White, D., Yau, D.: Right Bousfield localization and operadic algebras, preprint available electronically from arXiv: 1512.07570
White, D., Yau, D.: Homotopical Adjoint Lifting Theorem, preprint available electronically from arXiv: 1606.01803