Bounds for q-integrals of ${}_{r+1}\psi_{r+1}$ with applications
Tóm tắt
In this paper, we establish an inequality for the q-integral of the bilateral basic hypergeometric function
${}_{r+1}\psi_{r+1}$
. As applications of the inequality, we give some sufficient conditions for the convergence of q-series.
Tài liệu tham khảo
Anderson, GD, Barnard, RW, Vamanamurthy, KC, Vuorinen, M: Inequalities for zero-balanced hypergeometric functions. Trans. Am. Math. Soc. 347(5), 1713-1723 (1995)
Giordano, C, Laforgia, A, Pečarić, J: Supplements to known inequalities for some special functions. J. Math. Anal. Appl. 200, 34-41 (1996)
Giordano, C, Laforgia, A, Pečarić, J: Unified treatment of Gautschi-Kershaw type inequalities for the gamma function. J. Comput. Appl. Math. 99, 167-175 (1998)
Giordano, C, Laforgia, A: Inequalities and monotonicity properties for the gamma function. J. Comput. Appl. Math. 133, 387-396 (2001)
Giordano, C, Laforgia, A: On the Bernstein-type inequalities for ultraspherical polynomials. J. Comput. Appl. Math. 153, 243-284 (2003)
Örkcü, M: Approximation properties of bivariate extension of q-Szász-Mirakjan-Kantorovich operators. J. Inequal. Appl. 2013, 324 (2013)
Tariboon, J, Ntouyas, SK: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 121 (2014)
Araci, S, Acikgoz, M, Seo, J-J: A new family of q-analogue of Genocchi numbers and polynomials of higher order. Kyungpook Math. J. 54(1), 131-141 (2014)
Araci, S, Agyuz, E, Acikgoz, M: On a q-analog of some numbers and polynomials. J. Inequal. Appl. 2015, 19 (2015)
Andrews, GE: The Theory of Partitions. Encyclopedia of Mathematics and Applications, vol. 2. Addison-Wesley, Reading (1976)
Gasper, G, Rahman, M: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990)
Jackson, FH: On q-definite integrals. Q. J. Pure Appl. Math. 50, 101-112 (1910)
Wang, M: Some convergence theorems for the q-integral. Publ. Math. (Debr.) 82(2), 399-406 (2013)
Ito, M: Convergence and asymptotic behavior of Jackson integrals associated with irreducible reduced root systems. J. Approx. Theory 124, 154-180 (2003)