Bounding $$S(t)$$ and $$S_1(t)$$ on the Riemann hypothesis

Mathematische Annalen - Tập 356 - Trang 939-968 - 2012
Emanuel Carneiro1, Vorrapan Chandee2,3, Micah B. Milinovich4
1Instituto de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, Brazil
2Department of Mathematics, Burapha University, Chonburi, Thailand
3Centre de recherches mathématiques, Université de Montréal, Montreal, Canada
4Department of Mathematics, University of Mississippi, University, USA

Tóm tắt

Let $$\pi S(t)$$ denote the argument of the Riemann zeta-function, $$\zeta (s)$$ , at the point $$s=\frac{1}{2}+it$$ . Assuming the Riemann hypothesis, we present two proofs of the bound $$\begin{aligned} |S(t)| \le \left(\frac{1}{4} + o(1) \right)\frac{\log t}{\log \log t} \end{aligned}$$ for large $$t$$ . This improves a result of Goldston and Gonek by a factor of 2. The first method consists of bounding the auxiliary function $$S_1(t) = \int _0^{t} S(u) \> \text{ d}u$$ using extremal functions constructed by Carneiro, Littmann and Vaaler. We then relate the size of $$S(t)$$ to the size of the functions $$S_1(t\pm h)-S_1(t)$$ when $$h\asymp 1/\log \log t$$ . The alternative approach bounds $$S(t)$$ directly, relying on the solution of the Beurling–Selberg extremal problem for the odd function $$f(x) = \arctan \left(\frac{1}{x}\right) - \frac{x}{1 + x^2}$$ . This draws upon recent work by Carneiro and Littmann.

Tài liệu tham khảo

Barton, J.T., Montgomery, H.L., Vaaler, J.D.: Note on a Diophantine inequality in several variables. Proc. Am. Math. Soc. 129, 337–345 (2001) Carneiro, E., Chandee, V.: Bounding \(\zeta (s)\) in the critical strip. J. Number Theory 131, 363–384 (2011) Carneiro, E., Littmann, F.: Bandlimited approximations to the truncated Gaussian and applications. Constr. Approx. Preprint at http://arxiv.org/abs/1106.0567 Carneiro, E., Littmann, F., Vaaler, J.D.: Gaussian subordination for the Beurling–Selberg extremal problem. Trans. Am. Math. Soc. (2012, in press). http://arxiv.org/abs/1008.4969 Carneiro, E., Vaaler, J.D.: Some extremal functions in Fourier analysis, II. Trans. Am. Math. Soc. 362, 5803–5843 (2010) Carneiro, E., Vaaler, J.D.: Some extremal functions in Fourier analysis, III. Constr. Approx. 31(2), 259–288 (2010) Chandee, V., Soundararajan, K.: Bounding \(|\zeta (\frac{1}{2}+it)|\) on the Riemann hypothesis. Bull. Lond. Math. Soc. 43(2), 243–250 (2011) Davenport, H.: Multiplicative number theory. Graduate Texts in Mathematics, vol. 74, 3rd edn. Springer, New York (2000) Farmer, D.W., Gonek, S.M., Hughes, C.P.: The maximum size of L-functions. J. Reine Angew. Math. 609, 215–236 (2007) Fujii, A.: A note of the distribution of the argument of the Riemann zeta function. Comment. Math. Univ. St. Pauli 55(2), 135–147 (2006) Ghosh, A.: On Riemann’s zeta function—sign changes of \(S(t)\). Recent Progress in Analytic Number Theory, vol. 1. Academic Press, New York (1981) Goldston, D.A., Gonek, S.M.: A note on \(S(t)\) and the zeros of the Riemann zeta-function. Bull. Lond. Math. Soc. 39(3), 482–486 (2007) Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products, 7th edn. Elsevier, Amsterdam (2007). Translated from Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger Graham, S.W., Vaaler, J.D.: A class of extremal functions for the Fourier transform. Trans. Am. Math. Soc. 265, 283–382 (1981) Holt, J., Vaaler, J.D.: The Beurling–Selberg extremal functions for a ball in the Euclidean space. Duke Math. J. 83, 203–247 (1996) Iwaniec, H., Kowalski, E.: Analytic Number Theory, vol. 53. American Mathematical Society Colloquium Publications (2004) Karatsuba, A.A., Korolëv, M.A.: The argument of the Riemann zeta function. Rus. Math. Surveys 60(3), 433–488 (2005) (in English) Karatsuba, A.A., Korolëv, M.A.: The argument of the Riemann zeta function. Uspekhi Mat. Nauk 60(3), 41–96 (2005) (in Russian) Krein, M.G.: On the best approximation of continuous differentiable functions on the whole real axis. Dokl. Akad. Nauk SSSR 18, 615–624 (1938) (in Russian) Li, X.J., Vaaler, J.D.: Some trigonometric extremal functions and the Erdös-Turán type inequalities. Indiana Univ. Math. J. 48(1), 183–236 (1999) Littlewood, J.E.: On the zeros of the Riemann zeta-function. Proc. Camb. Philos. Soc. 22, 295–318 (1924) Littmann, F.: Entire majorants via Euler–Maclaurin summation. Trans. Am. Math. Soc. 358(7), 2821–2836 (2006) Littmann, F.: Entire approximations to the truncated powers. Constr. Approx. 22(2), 273–295 (2005) Ramachandra, K., Sankaranarayanan, A.: On some theorems of Littlewood and Selberg. I. J. Number Theory 44, 281–291 (1993) Selberg, A.: Contributions to the theory of the Riemann zeta-function. Arch. Math. Naturvid. B 48, 89–155 (1946) Selberg, A.: Lectures on Sieves. Atle Selberg: Collected Papers, vol. II, pp 65–247. Springer, Berlin, Atle Selberg (1991) Sz.Nagy, B.: Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen II. Ber. Math. Phys. Kl. Sächs. Akad. Wiss, Leipzig 91 (1939) Titchmarsh, E.C.: The theory of the Riemann zeta-function, 2nd edn. Oxford University Press, New York (1986) (edited and with a preface by D.R. Health-Brown) Tsang, K.-M.: Some \(\Omega \)-theorems for the Riemann zeta-function. Acta Arith. 46(4), 369–395 (1986) Vaaler, J.D.: Some extremal functions in Fourier analysis. Bull. Am. Math. Soc. 12, 183–215 (1985)