Bounding $$S(t)$$ and $$S_1(t)$$ on the Riemann hypothesis
Tóm tắt
Let
$$\pi S(t)$$
denote the argument of the Riemann zeta-function,
$$\zeta (s)$$
, at the point
$$s=\frac{1}{2}+it$$
. Assuming the Riemann hypothesis, we present two proofs of the bound
$$\begin{aligned} |S(t)| \le \left(\frac{1}{4} + o(1) \right)\frac{\log t}{\log \log t} \end{aligned}$$
for large
$$t$$
. This improves a result of Goldston and Gonek by a factor of 2. The first method consists of bounding the auxiliary function
$$S_1(t) = \int _0^{t} S(u) \> \text{ d}u$$
using extremal functions constructed by Carneiro, Littmann and Vaaler. We then relate the size of
$$S(t)$$
to the size of the functions
$$S_1(t\pm h)-S_1(t)$$
when
$$h\asymp 1/\log \log t$$
. The alternative approach bounds
$$S(t)$$
directly, relying on the solution of the Beurling–Selberg extremal problem for the odd function
$$f(x) = \arctan \left(\frac{1}{x}\right) - \frac{x}{1 + x^2}$$
. This draws upon recent work by Carneiro and Littmann.
Tài liệu tham khảo
Barton, J.T., Montgomery, H.L., Vaaler, J.D.: Note on a Diophantine inequality in several variables. Proc. Am. Math. Soc. 129, 337–345 (2001)
Carneiro, E., Chandee, V.: Bounding \(\zeta (s)\) in the critical strip. J. Number Theory 131, 363–384 (2011)
Carneiro, E., Littmann, F.: Bandlimited approximations to the truncated Gaussian and applications. Constr. Approx. Preprint at http://arxiv.org/abs/1106.0567
Carneiro, E., Littmann, F., Vaaler, J.D.: Gaussian subordination for the Beurling–Selberg extremal problem. Trans. Am. Math. Soc. (2012, in press). http://arxiv.org/abs/1008.4969
Carneiro, E., Vaaler, J.D.: Some extremal functions in Fourier analysis, II. Trans. Am. Math. Soc. 362, 5803–5843 (2010)
Carneiro, E., Vaaler, J.D.: Some extremal functions in Fourier analysis, III. Constr. Approx. 31(2), 259–288 (2010)
Chandee, V., Soundararajan, K.: Bounding \(|\zeta (\frac{1}{2}+it)|\) on the Riemann hypothesis. Bull. Lond. Math. Soc. 43(2), 243–250 (2011)
Davenport, H.: Multiplicative number theory. Graduate Texts in Mathematics, vol. 74, 3rd edn. Springer, New York (2000)
Farmer, D.W., Gonek, S.M., Hughes, C.P.: The maximum size of L-functions. J. Reine Angew. Math. 609, 215–236 (2007)
Fujii, A.: A note of the distribution of the argument of the Riemann zeta function. Comment. Math. Univ. St. Pauli 55(2), 135–147 (2006)
Ghosh, A.: On Riemann’s zeta function—sign changes of \(S(t)\). Recent Progress in Analytic Number Theory, vol. 1. Academic Press, New York (1981)
Goldston, D.A., Gonek, S.M.: A note on \(S(t)\) and the zeros of the Riemann zeta-function. Bull. Lond. Math. Soc. 39(3), 482–486 (2007)
Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products, 7th edn. Elsevier, Amsterdam (2007). Translated from Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger
Graham, S.W., Vaaler, J.D.: A class of extremal functions for the Fourier transform. Trans. Am. Math. Soc. 265, 283–382 (1981)
Holt, J., Vaaler, J.D.: The Beurling–Selberg extremal functions for a ball in the Euclidean space. Duke Math. J. 83, 203–247 (1996)
Iwaniec, H., Kowalski, E.: Analytic Number Theory, vol. 53. American Mathematical Society Colloquium Publications (2004)
Karatsuba, A.A., Korolëv, M.A.: The argument of the Riemann zeta function. Rus. Math. Surveys 60(3), 433–488 (2005) (in English)
Karatsuba, A.A., Korolëv, M.A.: The argument of the Riemann zeta function. Uspekhi Mat. Nauk 60(3), 41–96 (2005) (in Russian)
Krein, M.G.: On the best approximation of continuous differentiable functions on the whole real axis. Dokl. Akad. Nauk SSSR 18, 615–624 (1938) (in Russian)
Li, X.J., Vaaler, J.D.: Some trigonometric extremal functions and the Erdös-Turán type inequalities. Indiana Univ. Math. J. 48(1), 183–236 (1999)
Littlewood, J.E.: On the zeros of the Riemann zeta-function. Proc. Camb. Philos. Soc. 22, 295–318 (1924)
Littmann, F.: Entire majorants via Euler–Maclaurin summation. Trans. Am. Math. Soc. 358(7), 2821–2836 (2006)
Littmann, F.: Entire approximations to the truncated powers. Constr. Approx. 22(2), 273–295 (2005)
Ramachandra, K., Sankaranarayanan, A.: On some theorems of Littlewood and Selberg. I. J. Number Theory 44, 281–291 (1993)
Selberg, A.: Contributions to the theory of the Riemann zeta-function. Arch. Math. Naturvid. B 48, 89–155 (1946)
Selberg, A.: Lectures on Sieves. Atle Selberg: Collected Papers, vol. II, pp 65–247. Springer, Berlin, Atle Selberg (1991)
Sz.Nagy, B.: Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen II. Ber. Math. Phys. Kl. Sächs. Akad. Wiss, Leipzig 91 (1939)
Titchmarsh, E.C.: The theory of the Riemann zeta-function, 2nd edn. Oxford University Press, New York (1986) (edited and with a preface by D.R. Health-Brown)
Tsang, K.-M.: Some \(\Omega \)-theorems for the Riemann zeta-function. Acta Arith. 46(4), 369–395 (1986)
Vaaler, J.D.: Some extremal functions in Fourier analysis. Bull. Am. Math. Soc. 12, 183–215 (1985)