Bounding $$S(t)$$ and $$S_1(t)$$ on the Riemann hypothesis

Mathematische Annalen - Tập 356 - Trang 939-968 - 2012
Emanuel Carneiro1, Vorrapan Chandee2,3, Micah B. Milinovich4
1Instituto de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, Brazil
2Department of Mathematics, Burapha University, Chonburi, Thailand
3Centre de recherches mathématiques, Université de Montréal, Montreal, Canada
4Department of Mathematics, University of Mississippi, University, USA

Tóm tắt

Let $$\pi S(t)$$ denote the argument of the Riemann zeta-function, $$\zeta (s)$$ , at the point $$s=\frac{1}{2}+it$$ . Assuming the Riemann hypothesis, we present two proofs of the bound $$\begin{aligned} |S(t)| \le \left(\frac{1}{4} + o(1) \right)\frac{\log t}{\log \log t} \end{aligned}$$ for large $$t$$ . This improves a result of Goldston and Gonek by a factor of 2. The first method consists of bounding the auxiliary function $$S_1(t) = \int _0^{t} S(u) \> \text{ d}u$$ using extremal functions constructed by Carneiro, Littmann and Vaaler. We then relate the size of $$S(t)$$ to the size of the functions $$S_1(t\pm h)-S_1(t)$$ when $$h\asymp 1/\log \log t$$ . The alternative approach bounds $$S(t)$$ directly, relying on the solution of the Beurling–Selberg extremal problem for the odd function $$f(x) = \arctan \left(\frac{1}{x}\right) - \frac{x}{1 + x^2}$$ . This draws upon recent work by Carneiro and Littmann.

Tài liệu tham khảo