Bounding Horizon Area by Angular Momentum, Charge, and Cosmological Constant in 5-Dimensional Minimal Supergravity

Annales Henri Poincaré - Tập 20 - Trang 481-525 - 2018
Aghil Alaee1, Marcus Khuri2, Hari Kunduri3
1Department of Mathematics, University of Toronto, Toronto, Canada
2Department of Mathematics, Stony Brook University, Stony Brook, USA
3Department of Mathematics and Statistics, McMaster University, Hamilton, Canada

Tóm tắt

We establish a class of area–angular momentum–charge inequalities satisfied by stable marginally outer trapped surfaces in 5-dimensional minimal supergravity which admit a $$U(1)^2$$ symmetry. A novel feature is the fact that such surfaces can have the non-trivial topologies $$S^1 \times S^2$$ and L(p, q). In addition to two angular momenta, they may be characterized by ‘dipole charge’ as well as electric charge. We show that the unique geometries which saturate the inequalities are the horizon geometries corresponding to extreme black hole solutions. Analogous inequalities which also include contributions from a positive cosmological constant are also presented.

Tài liệu tham khảo

Alaee, A., Khuri, M., Kunduri, H.: Relating mass to angular momentum and charge in 5-dimensional minimal supergravity. Ann. Henri Poincaré 18(5), 1703–1753 (2017) Alaee, A., Khuri, M., Kunduri, H.: Existence and uniqueness of near-horizon geometries for 5-dimensional black holes. In preparation (2018) Breckenridge, J.C., Myers, R.C., Peet, A.W., Vafa, C.: D-branes and spinning black holes. Phys. Lett. B. 391, 93–98 (1997) Bryden, E.T., Khuri, M.A.: The area-angular momentum–charge inequality for black holes with positive cosmological constant. Class. Quantum Gravity 34, 125017 (2017) Chong, Z., Cvetič, M., Lü, H., Pope, C.N.: Non-extremal rotating black holes in five-dimensional gauged supergravity. Phys. Lett. B 644(2), 192–197 (2007) Chruściel, P.T., Costa, J.L., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. 15, 7 (2012) Chruściel, P.T., Nguyen, L.: A uniqueness theorem for degenerate Kerr–Newman black holes. Ann. Henri Poincaré 11, 585–609 (2010) Dain, S.: Geometric inequalities for axially symmetric black holes. Class. Quantum Gravity 29(7), 073001 (2012) Dain, S., Gabach-Clement, M.E.: Geometrical inequalities bounding angular momentum and charges in general relativity. Living Rev. Relativ. to appear arXiv:1710.04457 (2017) Dain, S., Khuri, M., Weinstein, G., Yamada, S.: Lower bounds for the area of black holes in terms of mass, charge, and angular momentum. Phys. Rev. D 88(2), 024048 (2013) Elvang, H., Emparan, R., Mateos, D., Reall, H.S.: A supersymmetric black ring. Phys. Rev. Lett. 93, 211302 (2004) Emparan, R.: Rotating circular strings, and infinite nonuniqueness of black rings. JHEP 03, 064 (2004) Emparan, R., Reall, H.S.: A rotating black ring solution in five dimensions. Phys. Rev. Lett. 88(10), 101101 (2002) Emparan, R., Reall, H.S.: Black holes in higher dimensions. Living Rev. Relativ. 11(6), 0801–3471 (2008) Fajman, D., Simon, W.: Area inequalities for stable marginally outer trapped surfaces in Einstein–Maxwell-dilaton theory. Adv. Theor. Math. Phys. 18(3), 687–707 (2014) Gabach-Clement, M.E., Jaramillo, J.L., Reiris, M.: Proof of the area-angular momentum–charge inequality for axisymmetric black holes. Class. Quantum Gravity 30(6), 065017 (2013) Gabach-Clement, M.E., Reiris, M., Simon, W.: The area-angular momentum inequality for black holes in cosmological spacetimes. Class. Quantum Gravity 32(14), 145006 (2015) Galloway, G.J.: Rigidity of marginally trapped surfaces and the topology of black holes. Commun. Anal. Geom. 16(1), 217–229 (2008) Galloway, G.J., Schoen, R.: A generalization of Hawkings black hole topology theorem to higher dimensions. Commun. Math. Phys. 266(2), 571–576 (2006) Gibbons, G.W., Kastor, D., London, L.A.J., Townsend, P.K., Traschen, J.H.: Supersymmetric selfgravitating solitons. Nucl. Phys. B 416, 850–880 (1994) Hollands, S.: Horizon area-angular momentum inequality in higher-dimensional spacetimes. Class. Quantum Gravity 29(6), 065006 (2012) Hollands, S., Ishibashi, A.: All vacuum near horizon geometries in D-dimensions with (D-3) commuting rotational symmetries. Ann. Henri Poincaré 10(8), 1537–1557 (2010) Hollands, S., Ishibashi, A.: Black hole uniqueness theorems in higher dimensional spacetimes. Class. Quantum Gravity 29(16), 163001 (2012) Hollands, S., Ishibashi, A., Wald, R.M.: A higher dimensional stationary rotating black hole must be axisymmetric. Commun. Math. Phys. 271(3), 699–722 (2007) Hollands, S., Yazadjiev, S.: Uniqueness theorem for 5-dimensional black holes with two axial killing fields. Commun. Math. Phys. 283(3), 749–768 (2008) Khuri, M., Woolgar, E.: Nonexistence of extremal de sitter black rings. Class. Quantum Gravity 34, 22LT01 (2017) Kunduri, H.K., Lucietti, J.: A classification of near-horizon geometries of extremal vacuum black holes. J. Math. Phys. 50(8), 082502 (2009) Kunduri, H.K., Lucietti, J.: Uniqueness of near-horizon geometries of rotating extremal AdS(4) black holes. Class. Quantum Gravity 26, 055019 (2009) Kunduri, H.K., Lucietti, J.: Constructing near-horizon geometries in supergravities with hidden symmetry. JHEP 2011(7), 1–31 (2011) Kunduri, H.K., Lucietti, J.: Classification of near-horizon geometries of extremal black holes. Living Rev. Relativ. 16, 8 (2013) Kunduri, H.K., Lucietti, J.: Black hole non-uniqueness via spacetime topology in five dimensions. JHEP 1410, 82 (2014) Kunduri, H.K., Lucietti, J.: Supersymmetric black holes with lens-space topology. Phys. Rev. Lett. 113(21), 211101 (2014) Kunduri, H.K., Lucietti, J., Reall, H.S.: Near-horizon symmetries of extremal black holes. Class. Quantum Gravity 24, 4169–4190 (2007) Rácz, I.: A simple proof of the recent generalizations of Hawking’s black hole topology theorem. Class. Quantum Gravity 25(16), 162001 (2008) Reall, H.S.: Higher dimensional black holes and supersymmetry. Phys. Rev. D 68, 024024 (2003). [Erratum: Phys. Rev. D 70, 089902 (2004)] Rogatko, M.: Mass angular momentum and charge inequalities for black holes in Einstein–Maxwell-axion-dilaton gravity. Phys. Rev. D 89, 044020 (2014) Schoen, R., Zhou, X.: Convexity of reduced energy and mass angular momentum inequalities. Ann. Henri Poincaré 14(7), 1747–1773 (2013) Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein–Hawking entropy. Phys. Lett. B 379(1), 99–104 (1996) Tomizawa, S., Nozawa, M.: Supersymmetric black lenses in five dimensions. Phys. Rev. D 94(4), 044037 (2016) Yazadjiev, S.: Area-angular momentum–charge inequality for stable marginally outer trapped surfaces in 4D Einstein–Maxwell-dilaton theory. Phys. Rev. D 87(2), 024016 (2013) Yazadjiev, S.: Horizon area-angular momentum–charge–magnetic flux inequalities in the 5D Einstein–Maxwell-dilaton gravity. Class. Quantum Gravity 30(11), 115010 (2013)