Boundedness of dyadic maximal operators on variable Lebesgue spaces

Advances in Operator Theory - Tập 5 Số 4 - Trang 1588-1598 - 2020
Ferenc Weisz1
1Department of numerical analysis, Eötvös L. University, Budapest, Hungary

Tóm tắt

AbstractWe introduce three types of dyadic maximal operators and prove that under some conditions on the variable exponent $$p(\cdot )$$ p ( · ) , they are bounded on $$L_{p(\cdot )}$$ L p ( · ) if $$1<p_-\le p_+<\infty $$ 1 < p - p + < . Here we correct Theorem 4.2 of the paper, Szarvas and Weisz (Banach J Math Anal 13:675–696, 2019).

Từ khóa


Tài liệu tham khảo

Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue spaces. Foundations and harmonic analysis. Birkhäuser/Springer, New York (2013)

Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev spaces with variable exponents. Springer, Berlin (2011)

Hao, Z., Jiao, Y.: Fractional integral on martingale Hardy spaces with variable exponents. Fract. Calc. Appl. Anal. 18(5), 1128–1145 (2015)

Jiao, Y., Weisz, F., Wu, L., Zhou, D.: Variable martingale Hardy spaces and their applications in Fourier analysis. Dissertationes Math. (to appear)

Jiao, Y., Zhou, D., Hao, Z., Chen, W.: Martingale Hardy spaces with variable exponents. Banach J. Math 10, 750–770 (2016)

Jiao, Y., Zuo, Y., Zhou, D., Wu, L.: Variable Hardy–Lorentz spaces $$H^{p(\cdot ), q}({\mathbb{R}}^n)$$. Math. Nachr. 292, 309–349 (2019)

Liu, J., Weisz, F., Yang, D., Yuan, W.: Variable anisotropic Hardy spaces and their applications. Taiwanese J. Math. 22, 1173–1216 (2018)

Liu, J., Weisz, F., Yang, D., Yuan, W.: Littlewood–Paley and finite atomic characterizations of anisotropic variable Hardy-Lorentz spaces and their applications. J. Fourier Anal. Appl. 25, 874–922 (2019)

Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262(9), 3665–3748 (2012)

Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators. Integral Equ. Oper. Theory 77, 123–148 (2013)

Schipp, F., Wade, W.R., Simon, P., Pál, J.: Walsh Series: An Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol, New York (1990)

Szarvas, K., Weisz, F.: The boundedness of the Cesaro- and Riesz means in variable dyadic Hardy spaces. Banach J. Math. Anal. 13, 675–696 (2019)