Boundedness of dyadic maximal operators on variable Lebesgue spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue spaces. Foundations and harmonic analysis. Birkhäuser/Springer, New York (2013)
Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev spaces with variable exponents. Springer, Berlin (2011)
Hao, Z., Jiao, Y.: Fractional integral on martingale Hardy spaces with variable exponents. Fract. Calc. Appl. Anal. 18(5), 1128–1145 (2015)
Jiao, Y., Weisz, F., Wu, L., Zhou, D.: Variable martingale Hardy spaces and their applications in Fourier analysis. Dissertationes Math. (to appear)
Jiao, Y., Zhou, D., Hao, Z., Chen, W.: Martingale Hardy spaces with variable exponents. Banach J. Math 10, 750–770 (2016)
Jiao, Y., Zuo, Y., Zhou, D., Wu, L.: Variable Hardy–Lorentz spaces $$H^{p(\cdot ), q}({\mathbb{R}}^n)$$. Math. Nachr. 292, 309–349 (2019)
Liu, J., Weisz, F., Yang, D., Yuan, W.: Variable anisotropic Hardy spaces and their applications. Taiwanese J. Math. 22, 1173–1216 (2018)
Liu, J., Weisz, F., Yang, D., Yuan, W.: Littlewood–Paley and finite atomic characterizations of anisotropic variable Hardy-Lorentz spaces and their applications. J. Fourier Anal. Appl. 25, 874–922 (2019)
Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262(9), 3665–3748 (2012)
Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators. Integral Equ. Oper. Theory 77, 123–148 (2013)
Schipp, F., Wade, W.R., Simon, P., Pál, J.: Walsh Series: An Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol, New York (1990)