Boundedness and uniqueness of quaternion Weyl transform
Tóm tắt
In this article, we prove that the quaternion Weyl transform (QWT) is a compact operator on
$$L^2({\mathbb {R}}^2,\mathbb Q)$$
for a certain class of symbols in
$$L^{r}\left( {\mathbb {R}}^{4},{\mathbb {Q}}\right) $$
when
$$1\le r\le 2,$$
and unbounded for
$$2
Tài liệu tham khảo
Amrein, W.O., Berthier, A.M.: On support properties of \(L^{p}\)-functions and their Fourier transforms. J. Funct. Anal. 24(3), 258–267 (1977)
Arnal, D., Ludwig, J.: Q.U.P. and Paley-Wiener properties of unimodular, especially nilpotent, Lie groups. Proc. Am. Math. Soc. 125(4), 1071–1080 (1997)
Bahri, M., Hitzer, E.S.M., Hayashi, A., Ashino, R.: An uncertainty principle for quaternion Fourier transform. Comput. Math. Appl. 56(9), 2398–2410 (2008)
Benedicks, M.: On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106(1), 180–183 (1985)
Chattopadhyay, A., Giri, D. K., Srivastava, R. K.: Qualitative uncertainty principle on certain Lie groups, arXiv:1607.03832
Chen, L.P., Kou, K.I., Liu, M.S.: Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform. J. Math. Anal. Appl. 423(1), 681–700 (2015)
Chen, L., Zhao, J.: Weyl transform and generalized spectrogram associated with quaternion Heisenberg group. Bull. Sci. Math. 136(2), 127–143 (2012)
Dalai, R. K., Ghosh, S., Srivastava, R. K.: Spherical means on Métivier groups and support theorem, arXiv:2108.11744
Epstein, C.L., Kleiner, B.: Spherical means in annular regions. Comm. Pure Appl. Math. 46(3), 441–451 (1993)
Ghosh, S., Srivastava, R.K.: Heisenberg uniqueness pairs for the Fourier transform on the Heisenberg group. Bull. Sci. Math. 166, 102941 (2021)
Ghosh, S., Srivastava, R.K.: Benedicks–Amrein–Berthier theorem for the Heisenberg motion group. Bull. Lond. Math. Soc. 54(2), 526–539 (2022)
Ghosh, S., Srivastava, R. K.: Benedicks–Amrein–Berthier theorem for the quaternion Heisenberg group, arXiv:1904.04023
Ghosh, S., Srivastava, R. K.: Unbounded Weyl transform on the Euclidean motion group and Heisenberg motion group, arXiv:2106.15704
El Haoui, Y., Fahlaoui, S.: Beurling’s theorem for the quaternion Fourier transform. J. Pseudo-Differ. Oper. Appl. 11(1), 187–199 (2020)
Gröchenig, K., Jaming, P., Malinnikova, E.: Zeros of the Wigner distribution and the short-time Fourier transform. Rev. Mat. Complut. 33(3), 723–744 (2020)
Helgason, S.: The Radon Transform, Progress in Mathematics, 5, Birkhäuser. Mass, Boston (1980)
Hogan, J.A., Lakey, J.D.: Hardy’s theorem and rotations. Proc. Am. Math. Soc. 134(5), 1459–1466 (2006)
Lian, P.: Sharp Hausdorff-Young inequalities for the quaternion Fourier transforms. Proc. Am. Math. Soc. 148(2), 697–703 (2020)
Narayanan, E.K., Ratnakumar, P.K.: Benedicks’ theorem for the Heisenberg group. Proc. Am. Math. Soc. 138(6), 2135–2140 (2010)
Narayanan, E.K., Thangavelu, S.: Injectivity sets for spherical means on the Heisenberg group. J. Math. Anal. Appl. 263(2), 565–579 (2001)
Narayanan, E.K., Thangavelu, S.: A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on \(~{\mathbb{C}}^n\). Ann. Inst. Fourier (Grenoble) 56(2), 459–473 (2006)
Parui, S., Thangavelu, S.: On theorems of Beurling and Hardy for certain step two nilpotent groups. Integral Transforms Spec. Funct. 20(1–2), 127–145 (2009)
Peng, L., Zhao, J.: Weyl transforms associated with the Heisenberg group. Bull. Sci. Math. 132(1), 78–86 (2008)
Peng, L., Zhao, J.: Weyl transforms on the upper half plane. Rev. Mat. Complut. 23(1), 77–95 (2010)
Rawat, R., Srivastava, R.K.: Twisted spherical means in annular regions in \({\mathbb{C}} ^n\) and support theorems. Ann. Inst. Fourier (Grenoble) 59(6), 2509–2523 (2009)
Simon, B.: The Weyl transforms and \(L^p\) functions on phase space. Proc. Am. Math. Soc. 116, 1045–1047 (1992)
Srivastava, R.K.: Coxeter system of lines and planes are sets of injectivity for the twisted spherical means. J. Funct. Anal. 267(2), 352–383 (2014)
Srivastava, R.K.: Non-harmonic cones are sets of injectivity for the twisted spherical means on \({\mathbb{C}}^n\). Trans. Am. Math. Soc. 368(3), 1941–1957 (2016)
Tang, S., Niu, P.: Hardy’s theorem and rotations of several complex variables. Anal. Math. 35(4), 273–287 (2009)
Thangavelu, S.: Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, vol. 159. Birkhäuser Boston Inc, Boston, MA (1998)
Vemuri, M.K.: Benedicks theorem for the Weyl transform. J. Math. Anal. Appl. 452(1), 209–217 (2017)
Volchkov, V.V.: Integral Geometry and Convolution Equations. Kluwer Academic Publishers, Dordrecht (2003)
Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover Publications Inc, New York (1950)
Wong, M.W.: Weyl Transform. Universitext, Springer-Verlag, New York (1998)