Boundedness and uniqueness of quaternion Weyl transform

Rupak K. Dalai1, Somnath Ghosh2, R. K. Srivastava1
1Department of Mathematics, Indian Institute of Technology, Guwahati, India
2Centre For Applicable Mathematics, Tata Institute of Fundamental Research, Bangalore, India

Tóm tắt

In this article, we prove that the quaternion Weyl transform (QWT) is a compact operator on $$L^2({\mathbb {R}}^2,\mathbb Q)$$ for a certain class of symbols in $$L^{r}\left( {\mathbb {R}}^{4},{\mathbb {Q}}\right) $$ when $$1\le r\le 2,$$ and unbounded for $$2

Tài liệu tham khảo

Amrein, W.O., Berthier, A.M.: On support properties of \(L^{p}\)-functions and their Fourier transforms. J. Funct. Anal. 24(3), 258–267 (1977) Arnal, D., Ludwig, J.: Q.U.P. and Paley-Wiener properties of unimodular, especially nilpotent, Lie groups. Proc. Am. Math. Soc. 125(4), 1071–1080 (1997) Bahri, M., Hitzer, E.S.M., Hayashi, A., Ashino, R.: An uncertainty principle for quaternion Fourier transform. Comput. Math. Appl. 56(9), 2398–2410 (2008) Benedicks, M.: On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106(1), 180–183 (1985) Chattopadhyay, A., Giri, D. K., Srivastava, R. K.: Qualitative uncertainty principle on certain Lie groups, arXiv:1607.03832 Chen, L.P., Kou, K.I., Liu, M.S.: Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform. J. Math. Anal. Appl. 423(1), 681–700 (2015) Chen, L., Zhao, J.: Weyl transform and generalized spectrogram associated with quaternion Heisenberg group. Bull. Sci. Math. 136(2), 127–143 (2012) Dalai, R. K., Ghosh, S., Srivastava, R. K.: Spherical means on Métivier groups and support theorem, arXiv:2108.11744 Epstein, C.L., Kleiner, B.: Spherical means in annular regions. Comm. Pure Appl. Math. 46(3), 441–451 (1993) Ghosh, S., Srivastava, R.K.: Heisenberg uniqueness pairs for the Fourier transform on the Heisenberg group. Bull. Sci. Math. 166, 102941 (2021) Ghosh, S., Srivastava, R.K.: Benedicks–Amrein–Berthier theorem for the Heisenberg motion group. Bull. Lond. Math. Soc. 54(2), 526–539 (2022) Ghosh, S., Srivastava, R. K.: Benedicks–Amrein–Berthier theorem for the quaternion Heisenberg group, arXiv:1904.04023 Ghosh, S., Srivastava, R. K.: Unbounded Weyl transform on the Euclidean motion group and Heisenberg motion group, arXiv:2106.15704 El Haoui, Y., Fahlaoui, S.: Beurling’s theorem for the quaternion Fourier transform. J. Pseudo-Differ. Oper. Appl. 11(1), 187–199 (2020) Gröchenig, K., Jaming, P., Malinnikova, E.: Zeros of the Wigner distribution and the short-time Fourier transform. Rev. Mat. Complut. 33(3), 723–744 (2020) Helgason, S.: The Radon Transform, Progress in Mathematics, 5, Birkhäuser. Mass, Boston (1980) Hogan, J.A., Lakey, J.D.: Hardy’s theorem and rotations. Proc. Am. Math. Soc. 134(5), 1459–1466 (2006) Lian, P.: Sharp Hausdorff-Young inequalities for the quaternion Fourier transforms. Proc. Am. Math. Soc. 148(2), 697–703 (2020) Narayanan, E.K., Ratnakumar, P.K.: Benedicks’ theorem for the Heisenberg group. Proc. Am. Math. Soc. 138(6), 2135–2140 (2010) Narayanan, E.K., Thangavelu, S.: Injectivity sets for spherical means on the Heisenberg group. J. Math. Anal. Appl. 263(2), 565–579 (2001) Narayanan, E.K., Thangavelu, S.: A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on \(~{\mathbb{C}}^n\). Ann. Inst. Fourier (Grenoble) 56(2), 459–473 (2006) Parui, S., Thangavelu, S.: On theorems of Beurling and Hardy for certain step two nilpotent groups. Integral Transforms Spec. Funct. 20(1–2), 127–145 (2009) Peng, L., Zhao, J.: Weyl transforms associated with the Heisenberg group. Bull. Sci. Math. 132(1), 78–86 (2008) Peng, L., Zhao, J.: Weyl transforms on the upper half plane. Rev. Mat. Complut. 23(1), 77–95 (2010) Rawat, R., Srivastava, R.K.: Twisted spherical means in annular regions in \({\mathbb{C}} ^n\) and support theorems. Ann. Inst. Fourier (Grenoble) 59(6), 2509–2523 (2009) Simon, B.: The Weyl transforms and \(L^p\) functions on phase space. Proc. Am. Math. Soc. 116, 1045–1047 (1992) Srivastava, R.K.: Coxeter system of lines and planes are sets of injectivity for the twisted spherical means. J. Funct. Anal. 267(2), 352–383 (2014) Srivastava, R.K.: Non-harmonic cones are sets of injectivity for the twisted spherical means on \({\mathbb{C}}^n\). Trans. Am. Math. Soc. 368(3), 1941–1957 (2016) Tang, S., Niu, P.: Hardy’s theorem and rotations of several complex variables. Anal. Math. 35(4), 273–287 (2009) Thangavelu, S.: Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, vol. 159. Birkhäuser Boston Inc, Boston, MA (1998) Vemuri, M.K.: Benedicks theorem for the Weyl transform. J. Math. Anal. Appl. 452(1), 209–217 (2017) Volchkov, V.V.: Integral Geometry and Convolution Equations. Kluwer Academic Publishers, Dordrecht (2003) Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover Publications Inc, New York (1950) Wong, M.W.: Weyl Transform. Universitext, Springer-Verlag, New York (1998)