Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. A. Samarskii, Theory of Finite Difference Schemes (Nauka, Moscow, 1977; Marcel Dekker, New York, 2001).
V. A. Il’in and E. I. Moiseev, “Nonlocal Problem for the Sturm-Liouville Operator in the Differential and Difference Interpretation,” Dokl. Akad. Nauk SSSR 291(3), 534–540 (1986).
A. N. Tikhonov and A. A. Samarskii, “On Uniform Finite Difference Schemes,” Zh. Vychisl. Mat. Mat. Fiz. 1(1), 5–63 (1961).
V. M. Abdullaev and K. R. Aida-Zade, “On the Numerical Solution of Loaded Systems of Ordinary Differential Equations,” Zh. Vychisl. Mat. Mat. Fiz. 44(9), 1585–1595 (2004) [Comput. Math. Math. Phys. 44, 1505–1515 (2004)].
A. M. Nakhushev, “Loaded Equations,” Differ. Uravn. 19(1), 86–94 (1983).
Yu. A. Anokhin, A. B. Gorstko, L. Yu. Dameshek, et al., Mathematic Models and Methods for Controlling Large-Scale Bodies of Water (Nauka, Novosibirsk, 1987) [in Russian].
V. B. Andreev, “On the Convergence of Finite Difference Schemes Approximating the Second and Third Boundary Value Problems for Elliptic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 8(6), 1228–1231 (1968).
A. A. Samarskii, “Uniform Finite Difference on Nonuniform Grids for Parabolic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 3(2), 266–298 (1963).
A. F. Voevodin and S. M. Shugrin, Numerical Methods for One-Dimensional Systems (Nauka, SO AN SSSR, Novosibirsk, 1981) [in Russian].