Boundary regularity of stationary critical points for a Cosserat energy functional

Yimei Li1, Lushun Wang2
1Department of Mathematic, School of Sciences, Beijing Jiaotong University, Beijing, People’s Republic of China
2Department of Mathematics, Zhejiang Normal University, Jinhua, People’s Republic of China

Tóm tắt

In this paper, we will discuss the boundary regularity of stationary critical points for the following Cosserat energy functional: 0.1 $$\begin{aligned} {\textrm{Coss}}(\phi , R)=\int _\Omega \big (|R^t\nabla \phi -I_3|^2+|\nabla R|^p+\langle \phi -x, f\rangle +\langle R, M\rangle \big )\,dx, \end{aligned}$$ where $$2\le p<3$$ , $$f\in L^{\infty }(\Omega , {\mathbb {R}}^3)$$ , $$M\in L^{\infty }(\Omega , SO(3))$$ , and $$\Omega \subset \mathbb {R}^3$$ is a domain with $$C^1$$ boundary. Precisely, if $$(\phi , R)\in H^1(\Omega ,{\mathbb {R}}^3)\times W^{1,p}(\Omega , SO(3))$$ is a stationary critical point of (0.1) satisfying a certain boundary monotonicity inequality, we show that there exists a closed subset $$\Sigma \subset \partial \Omega $$ satisfying the Hausdorff measure $$H^{3-p}(\Sigma )=0$$ such that $$(\phi , R)\in C^{1,\alpha }(\Omega _{\delta }\setminus \Sigma )\times C^\alpha (\Omega _{\delta }\setminus \Sigma )$$ , where $$\Omega _{\delta }:=\{x\in {\bar{\Omega }}, dist(x,\partial \Omega )\le \delta \}$$ , $$\delta >0$$ .

Tài liệu tham khảo

Bethuel, F.: On the singular set of stationary harmonic maps. Manu. Math. 78, 417–443 (1993) Boccardo, L., Murat, F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19, 581–597 (1992) Chang, S.C., Chen, J.T., Wei, S.W.: Liouville properties for \(p\)-harmonic maps with finite \(q\)-energy. Trans. AMS 368, 787–825 (2016) Cheeger, J., Naber, A.: Quantitative stratification and the regularity of harmonic maps and minimal currents. Commun. Pure Appl. Math. 66, 965–990 (2013) Cosserat, E., Cosserat, F.: Théorie des corps déformables. Librairie Scientifique (Paris: Hermann, 1909) Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116, 101–113 (1991) Evans, L.C., Gariepy, R.: Measure Theory and Fine Properties of Functions, Revised Textbooks in Mathematics. CRC Press, Boca Raton, FL (2015) Fuchs, M.: \(p\)-harmonic obstacle problems. I. Partial regularity theory. Ann. Mat. Pura Appl. 156, 127–158 (1990) Gastel, A.: Regularity issues for Cosserat continua and p-harmonic maps. SIAM J. Math. Anal. 51, 4287–4310 (2019) Giaquinta, M., Giusti, E.: The singular set of the minima of certain quadratic functionals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11, 45–55 (1984) Hardt, R., Lin, F.H.: Mappings minimizing the \(L^p\) norm of the gradient. Commun. Pure Appl. Math. 40, 555–588 (1987) Hardt, R., Lin, F.H., Wang, C.Y.: Singularities of p-energy minimizing maps. Commun. Pure Appl. Math. 50, 399–447 (1997) Hélein, F.: Regularite des applications faiblement harmoniques entre une surface et variete riemannienne. CRAS Paris 312, 591–596 (1991) Hong, M.C., Wang, C.Y.: On the singular set of stable-stationary harmonic maps. Calc. Var. Partial Differ. Equ. 9, 141–156 (1999) Li, Y. M., Wang, C.Y.: Regularity of weak solution of variational problem modeling the cosserat micropolar elasticity. Int. Math. Res. Not. IMRN. https://doi.org/10.1093/imrn/rnaa202 Lin, F.H.: Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. Math. 149, 785–829 (1999) Lin, F.H., Wang, C.Y.: Stable Stationary Harmonic Maps to Spheres. Acta Math. Sin. (Engl. Ser.) 22, 319–330 (2006) Luckhaus, S.: Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. 37, 349–367 (1988) Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1986) Naber, A., Valtorta, D.: Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps. Ann. Math. 2(185), 131–227 (2017) Naber, A., Valtorta, D., Veronelli, G.: Quantitative regularity for p-harmonic maps. Commun. Anal. Geom. 27, 111–159 (2019) Neff, P.: Existence of minimizers for a finite-strain micromorphic elastic solid. Proc. R. Soc. Edinb. Sect. A 136, 997–1012 (2006) Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17, 307–335 (1982) Schoen, R., Uhlenbeck, K.: Regularity of minimizing harmonic maps into the sphere. Invent. Math. 78, 89–100 (1984) Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18, 253–268 (1983) Toro, T., Wang, C.Y.: Compactness properties of weakly \(p\)-harmonic maps into homogeneous spaces. Indiana Univ. Math. J. 44, 87–113 (1995) Wang, C.Y.: Boundary partial regularity for a class of harmonic maps. Commun. Partial Differ. Equ. 24, 355–368 (1999) Xin, Y.L., Yang, Y.H.: Regularity of \(p\)-harmonic maps into certain manifolds with positive sectional curvature. J. Reine Angew. Math. 466, 1–17 (1995)