Boundary layer solutions to functional elliptic equations

Michel Chipot1, Francisco Júlio S. A. Corrêa2
1Institute of Mathematics, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
2Unidade Acadêmica de Matemática e Estatística Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande, 58109-970, Campina Grande, PB, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

K.J. Brown and H. Budin, On the existence of positive solutions for a class of semilinear elliptic boundary value problems. SIAM J. Math. Anal.,10(5) (1979), 875–883.

G.F. Carrier, On the non-linear vibration problem of the elastic string. Quart. Appl. Math., 3 (1945), 157–165.

M. Chipot, Remarks on some class of nonlocal elliptic problems. Recent advances on elliptic and parabolic issues. World Scientific (2006), 79–102.

M. Chipot, Elements of nonlinear analysis. Birkhäuser Advanced Texts (2000).

M. Chipot, The diffusion of a population partly driven by its preferences. A.R.M.A., 155 (2000), 237–259.

M. Chipot and B. Lovat, Some remarks on non local elliptic and parabolic problems. Nonlinear Anal., 30(7) (1997), 4619–4627.

M. Chipot and B. Lovat, On the asymptotic behaviour of some nonlocal problems. Positivity (1999), 65–81.

M. Chipot and J.F. Rodrigues, On a class of nonlocal nonlinear problems. Math. Model. Numer. Anal., 26(3) (1992), 447–468.

F.J.S.A. Corrêa, On multiple positive solutions of positone and nonpositone problems. Abstract and Applied Analysis, 4(2) (1999), 101–108.

F.J.S.A. Corrêa, On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal., 59 (2004), 1147–1155.

F.J.S.A. Corrêa, Silvano D.B. Menezes and J. Ferreira, On a class of problems involving a nonlocal operator. Applied Mathematics and Computation, 147 (2004), 475–489.

E.N. Dancer and K. Schmitt, On positive solutions of semilinear elliptic equations. Proc. Amer. Math. Soc., 101 (1987), 445–452.

D.G. de Figueiredo, On the uniqueness of positive solutions of the Dirichlet problem for −Δu = λ sin u, Nonlinear P.D.E. and Appl., Collège de France Seminar, Vol. 7, Pitman (1985), 80–83.

D.G. de Figueiredo, On the existence of multiple ordered solutions for nonlinear eigenvalue problems. Nonlinear Anal. TMA, 11 (1987), 481–492.

D.G. de Figueiredo, M. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain pass techniques. Diff. Int. Equations, 17 (2004), 119–126.

J.M. Gomes and L. Sanchez, On a variational approach to some non-local boundary value problems. Applicable Analysis, 84(9) (2005), 909–925.

P. Hess, On multiple positive solutions of nonlinear elliptic eigenvalue problems. Comm. P.D.E. 6, 8 (1981), 951–961.

G. Kirchhoff, Mechanik. Teubner, Leipzig (1983).

J. LÍmaco, H.R. Clark and L.A. Medeiros, Remarks on nonlinear biharmonic evolution equation of Kirchhoff type in noncylindrical domain.Int. J. Math. Math. Sci., 2003(32), June (2003), 2035–2052.

J.L. Lions, Quelques Méthodes de Résolution de Problèmes aux Limites Non Linéaires. Dunod, Paris (1969).

L.A. Medeiros,J. Limaco and S.B. Menezes, Vibrations of elastic strings: mathematical aspects. Part One, J. Comput. Anal. Appl., 4(2), April (2002), 91–127.

F. Riesz and B.S.Z. Nagy, Leçons d’analyse fontionnelle. Gauthier-Villars (1975).

M. Struwe, Variational Methods. Springer (1990).

E. Sylwestrzak, Iterations for nonlocal elliptic problems. Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, Warszawa.