Boundary layer flow of an Oldroyd-B fluid in the region of a stagnation point over a stretching sheet

Canadian Journal of Physics - Tập 88 Số 9 - Trang 635-640 - 2010
M. Sajid1,2, Zaheer Abbas1,2, T. Javed1,2, Nasir Ali1,2
1Department of Mathematics, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan.
2Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan

Tóm tắt

In this paper, the mathematical model for the two-dimensional boundary layer flow of an Oldroyd-B fluid is presented. The developed equations are used to discuss the problem of two-dimensional flow in the region of a stagnation point over a stretching sheet. The obtained partial differential equations are reduced to an ordinary differential equation by a suitable transformation. The obtained equation is then solved using a finite difference method. The influence of the pertinent fluid parameters on the velocity is discussed through graphs. The behaviour of f ″(0) is also investigated with changes in parameter values. It is observed that an increase in the relaxation time constant causes a reduction in the boundary layer thickness. To the best of our knowledge, this type of solution for an Oldroyd-B fluid is presented for the first time in the literature.

Từ khóa


Tài liệu tham khảo

10.1002/aic.690070108

10.1002/aic.690070211

Crane L.J., 1970, Z. Angew. Math. Mech., 21, 645

10.1002/cjce.5450550619

10.1017/S0022112081000323

10.1007/BF00276915

10.1063/1.866827

10.1063/1.864868

10.1007/s002310100215

10.1016/j.ijnonlinmec.2004.07.008

10.1016/j.ijnonlinmec.2004.04.006

10.1016/S0020-7462(03)00044-1

10.1016/j.ijengsci.2003.09.008

10.1016/j.ijengsci.2003.12.002

10.1016/j.ijnonlinmec.2003.08.005

10.1017/S0022112003004865

10.1016/j.ijnonlinmec.2005.04.008

10.1016/j.ijheatmasstransfer.2006.06.045

10.1016/j.ijheatmasstransfer.2007.12.022

10.1016/j.ijnonlinmec.2005.05.006

10.1007/s00162-006-0025-y

Hayat T., 2006, Phys. Lett., 358, 396, 10.1016/j.physleta.2006.04.117

10.1016/j.ijengsci.2007.04.009

Hayat T., 2008, Phys. Lett., 372, 4698, 10.1016/j.physleta.2008.05.006

10.1016/j.cnsns.2007.09.011

10.1016/j.cnsns.2007.12.003

10.1016/j.chaos.2007.01.067

Chiam T.C., 1982, J. Appl. Math. Mech., 62, 565

10.1016/0045-7930(86)90004-6

10.1016/0020-7225(89)90065-7

10.1007/BF01176097

10.1016/S0020-7225(01)00026-X

10.1016/j.ijnonlinmec.2003.08.007

10.1093/imamat/61.2.179

10.1016/0020-7225(76)90006-9

10.1016/0020-7225(81)90040-9

10.1016/0898-1221(80)90030-9

10.1016/0020-7462(94)00027-8

J. Harris. Rheology and non-Newtonian flow. Longman, London. 1977.

Ghosh A.K., 2009, Comput. Appl. Math., 28, 365, 10.1590/S1807-03022009000300006

10.1155/IJMMS.2005.3185

10.1016/j.actaastro.2008.07.016

10.1098/rspa.1950.0035

H. Schichting. Boundary layer theory, 6th ed. McGraw-Hill, New York. 1964.

10.1007/BF01170596

10.1016/S0020-7462(98)00073-0