Boundary concentrated finite elements for optimal control problems with distributed observation

Computational Optimization and Applications - Tập 62 - Trang 31-65 - 2015
S. Beuchler1, K. Hofer1, D. Wachsmuth2, J.-E. Wurst2
1Institut für Numerische Simulation, Universität Bonn, Bonn, Germany
2Institut für Mathematik, Universität Würzburg, Würzburg, Germany

Tóm tắt

We consider the discretization of an optimal boundary control problem with distributed observation by the boundary concentrated finite element method. If the constraint is a $$H^{1+\delta }(\Omega )$$ regular elliptic PDE with smooth differential operator and source term, we prove for the two dimensional case that the discretization error in the $$L_2$$ norm decreases like $$N^{-\delta }$$ , where $$N$$ is the number of unknowns. Our approach is suitable for solving a wide class of problems, among them piecewise defined data and tracking functionals acting only on a subdomain of $$\Omega $$ . We present several numerical results.

Tài liệu tham khảo

Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975) Apel, T., Pfefferer, J., Rösch, A.: Finite element error estimates for Neumann boundary control problems on graded meshes. Comput. Optim. Appl. 52(1), 3–28 (2012) Apel, T., Pfefferer, J., Rösch, A.: Finite element error estimates on the boundary with application to optimal control. Math. Comput. 84(291), 33–70 (2015) Babuška, I., Guo, B.: Regularity of the solution of elliptic problems with piecewise analytic data. Part I: boundary value problems for linear elliptic equation of second order. SIAM J. Math. Anal. 19(1), 172–203 (1988) Babuška, I., Guo, B.: Regularity of the solution of elliptic problems with piecewise analytic data. Part II: the trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions. SIAM J. Math. Anal. 20(4), 763–781 (1989) Bank, R.E., Sherman, A.H., Weiser, A.: Some refinement algorithms and data structures for regular local mesh refinement. Sci. Comput. Appl. Math. Comput. Phys. Sci. 1, 3–17 (1983) Beuchler, S., Pechstein, C., Wachsmuth, D.: Boundary concentrated finite elements for optimal boundary control problems of elliptic PDEs. Comput. Optim. Appl. 51(2), 883–908 (2012) Casas, E., Mateos, M.: Error estimates for the numerical approximation of Neumann control problems. Comput. Optim. Appl. 39(3), 265–295 (2008) Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31(2), 193–219 (2005) Chen, Y., Lin, Y.: A posteriori error estimates for \(hp\) finite element solutions of convex optimal control problems. J. Comput. Appl. Math. 235(12), 3435–3454 (2011) Chen, Y., Yi, N., Liu, W.: A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46(5), 2254–2275 (2008) Demkowicz, L.: Computing with hp-Adaptive Finite Elements. CRC Press, Taylor Francis, Boca Raton (2006) Eibner, T., Melenk, J.M.: A local error analysis of the boundary-concentrated \(hp\)-FEM. IMA J. Numer. Anal. 27(1), 752–778 (2007) Gong, W., Liu, W., Yan, N.: A posteriori error estimates of \(hp\)-FEM for optimal control problems. Int. J. Numer. Anal. Model. 8(1), 48–69 (2011) Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985) Hinze, M., Matthes, U.: A note on variational discretization of elliptic neumann boundary control. Control Cybern. 38, 577–591 (2009) Jerison, D.S., Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4(2), 203–207 (1981) Karniadakis, G.E.M., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Numerical Mathematics and Scientific Computation Series. Oxford University Press, Oxford (1999) Khoromskij, B.N., Melenk, J.M.: Boundary concentrated finite element methods. SIAM J. Numer. Anal. 41, 1–36 (2003) Kufner, A., Sändig, A.-M.: Some Applications of Weighted Sobolev Spaces. BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1987) Mateos, M., Rösch, A.: On saturation effects in the Neumann boundary control of elliptic optimal control problems. Comput. Optim. Appl. 49(2), 359–378 (2011) Melenk, J.M.: hp-Finite Element Methods for Singular Perturbations. Lecture Notes in Mathematics, vol. 1796. Springer, Berlin (2002) Melenk, J.M.: \(hp\)-interpolation of nonsmooth functions and an application to \(hp\)-a posteriori error estimation. SIAM J. Numer. Anal. 43(1), 127–155 (2005) Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague (1967) Schwab, C.: p- and hp- Finite Element Methods—Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998) Tröltzsch, F.: Optimal Control of Partial Differential Equations. Graduate Studies in Mathematics, vol. 112. AMS, Providence (2010) Wloka, J.: Funktionalanalysis und Anwendungen. Walter de Gruyter, Berlin (1971) Yosida, K.: Functional Analysis. Springer, Berlin (1965)