Boundary Value Problems for Riemann–Liouville Fractional Differential Inclusions with Nonlocal Hadamard Fractional Integral Conditions

Sotiris K. Ntouyas1,2, Jessada Tariboon3, Weerawat Sudsutad3
1Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
2Department of Mathematics , University of Ioannina , Ioannina , GREECE
3Department of Mathematics, Nonlinear Dynamic Analysis Research Center, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

Tóm tắt

Từ khóa


Tài liệu tham khảo

Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V, Amsterdam (2006)

Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Boston (2012)

Agarwal R.P., Zhou Y., He Y.: Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59, 1095–1100 (2010)

Baleanu D., Mustafa O.G., Agarwal R.P.: On L p -solutions for a class of sequential fractional differential equations. Appl. Math. Comput. 218, 2074–2081 (2011)

Ahmad, B., Nieto, J.J.: Riemann–Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Bound. Value Probl. 36, 9 (2011)

Ahmad, B., Ntouyas, S.K., Alsaedi, A.: New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ., 2011, 107384 (2011)

O’Regan D., Stanek S.: Fractional boundary value problems with singularities in space variables. Nonlinear Dynam. 71, 641–652 (2013)

Ahmad, B., Ntouyas, S.K., Alsaedi, A.: A study of nonlinear fractional differential equations of arbitrary order with Riemann–Liouville type multistrip boundary conditions. Math. Probl. Eng., 2013, 320415 (2013)

Ahmad, B., Nieto, J.J.: Boundary value problems for a class of sequential integrodifferential equations of fractional order. J. Funct. Spaces Appl., 8 (2013)

Zhang L., Ahmad B., Wang G., Agarwal R.P.: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 249, 51–56 (2013)

Liu X., Jia M., Ge W.: Multiple solutions of a p-Laplacian model involving a fractional derivative. Adv. Differ. Equ. 2013, 126 (2013)

Hadamard J.: Essai sur l’etude des fonctions donnees par leur developpment de Taylor. J. Mat. Pure Appl. Ser. 8, 101–186 (1892)

Butzer P.L., Kilbas A.A., Trujillo J.J.: Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269, 387–400 (2002)

Butzer P.L., Kilbas A.A., Trujillo J.J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269, 1–27 (2002)

Butzer P.L., Kilbas A.A., Trujillo J.J.: Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270, 1–15 (2002)

Kilbas A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38, 1191–1204 (2001)

Kilbas A.A., Trujillo J.J.: Hadamard-type integrals as G-transforms. Integr. Transform. Spec. Funct. 14, 413–427 (2003)

Tariboon, J., Ntouyas, S.K., Sudsutad, W.: Nonlocal Hadamard fractional integral conditions for nonlinear Riemann–Liouville fractional differential equations. Bound. Value Probl. 253, 16 (2014)

Deimling, K.: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York (1992)

Hu, S., Papageorgiou, N.: Handbook of Multivalued Analysis, Theory I. Kluwer, Dordrecht (1997)

Covitz H., Nadler S.B. Jr: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8, 5–11 (1970)

Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer, Dordrecht (1991)

Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer-Verlag, Berlin-Heidelberg-New York (1977)

Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York (2005)

Lasota A., Opial Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13, 781–786 (1965)

Bressan A., Colombo G.: Extensions and selections of maps with decomposable values. Studia Math. 90, 69–86 (1988)

Frigon, M.: Théorèmes d’existence de solutions d’inclusions différentielles. In: Granas, A., Frigon, M. (eds.) Topological Methods in Differential Equations and Inclusions, NATO ASI Series C, vol. 472, pp. 51–87. Kluwer Acad. Publ., Dordrecht (1995)