Boundary Ghosts for Discrete Tomography

Journal of Mathematical Imaging and Vision - Tập 63 - Trang 428-440 - 2021
Matthew Ceko1, Timothy Petersen1,2, Imants Svalbe1, Rob Tijdeman3
1School of Physics and Astronomy, Monash University, Melbourne, Australia
2Monash Centre for Electron Microscopy, Monash University, Melbourne, Australia
3Mathematical Institute, Leiden University, Leiden, Netherlands

Tóm tắt

Discrete tomography reconstructs an image of an object on a grid from its discrete projections along relatively few directions. When the resulting system of linear equations is under-determined, the reconstructed image is not unique. Ghosts are arrays of signed pixels that have zero sum projections along these directions; they define the image pixel locations that have non-unique solutions. In general, the discrete projection directions are chosen to define a ghost that has minimal impact on the reconstructed image. Here we construct binary boundary ghosts, which only affect a thin string of pixels distant from the object centre. This means that a large portion of the object around its centre can be uniquely reconstructed. We construct these boundary ghosts from maximal primitive ghosts, configurations of $$2^N$$ connected binary ( $$\pm 1$$ ) points over N directions. Maximal ghosts obfuscate image reconstruction and find application in secure storage of digital data.

Tài liệu tham khảo

Alpers, A., Larman, D.G.: The smallest sets of points not determined by their x-rays. Bull. Lond. Math. Soc. 47(1), 171–176 (2015) Alpers, A., Tijdeman, R.: The two-dimensional Prouhet-Tarry-Escott problem. J. Number Theory 123, 403–412 (2007) Autrusseau, F.: Modélisation psychovisuelle pour le tatouage des images. Ph.D. thesis (2002) Autrusseau, F., Guedon, J.V., Bizais, Y.: Mojette cryptomarking scheme for medical images. In: Medical Imaging 2003: Image Processing, vol. 5032, pp. 958–965. International Society for Optics and Photonics (2003) Brunetti, S., Dulio, P., Hajdu, L., Peri, C.: Ghosts in discrete tomography. J. Math. Imag. Vis. 53, 210–224 (2015) Cahill, N.D., D Errico, J.R., Spence, J.P.: Complex factorizations of the Fibonacci and Lucas numbers. Fibonacci Quarter. 41(1), 13–19 (2003) Ceko, M., Pagani, S., Tijdeman, R.: Algorithms for linear time reconstruction by discrete tomography II. Discrete Appl. Math. (under review) Chandra, S.S., Svalbe, I.D., Guédon, J., Kingston, A.M., Normand, N.: Recovering missing slices of the discrete Fourier transform using ghosts. IEEE Trans. Image Process. 21, 4431–4441 (2012) Dulio, P., Frosini, A., Pagani, S.M.: A geometrical characterization of regions of uniqueness and applications to discrete tomography. Inverse Probl. 31(12), 125011 (2015) Gardner, R., Gritzmann, P.: Discrete tomography: determination of finite sets by X-rays. Trans. Am. Math. Soc. 349, 2271–2295 (1997) Golomb, S.W.: Replicating figures in the plane. Math Gazette 48, 403–412 (1964) Guédon, J.: The Mojette Transform: Theory and Applications. Wiley, Hoboken (2009) Guédon, J.P., Parrein, B., Normand, N.: Internet distributed image information system. Integr. Comput. Aided Eng. 8(3), 205–214 (2001) Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew. Math. 534, 119–128 (2001) Katz, M.: Questions of uniqueness and resolution in reconstruction from projections. In: Lecture Notes in Biomathematics, vol. 26. Springer-Verlag, Berlin, Heidelberg (1978) Normand, N., Kingston, A., Évenou, P.: A geometry driven reconstruction algorithm for the Mojette transform. In: International Conference on Discrete Geometry for Computer Imagery, pp. 122–133. Springer (2006) Pagani, S., Tijdeman, R.: Algorithms for linear time reconstruction by discrete tomography. Discrete Appl. Math. 271, 152–170 (2019) Pertin, D.: Mojette erasure code for distributed storage (Ph.D Thesis). University of Nantes (2016) Svalbe, I., Ceko, M.: Maximal N-ghosts and minimal information recovery from N projected views of an array. In: International Conference on Discrete Geometry for Computer Imagery, pp. 135–146. Springer (2017) Svalbe, I., Nazareth, N., Normand, N., Chandra, S.: On constructing minimal ghosts. In: Digital Image Computing: Techniques and Applications (DICTA), pp. 276–281. IEEE (2010) Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R., Van Tendeloo, G.: Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374 (2011) Varga, L., Balázs, P., Nagy, A.: Projection selection dependency in binary tomography. Acta Cybernetica 20, 167–187 (2011)